January 15, 2021 - 1 min read
BREAK
\(\frac{f_{c} + 1}{2}\)
\(\mathcal{D}\)
\(\mathcal{O}(n)\)
\(\mathcal{S}\)
\(\mathcal{1/3}\)
\(2f_{c} + 1\)
\(f_{c} + 1\)
\(r + 1\)
\(f_{c}\)
\(2f_{d} + 1\)
\(f_{d} + 1\)
\(f_{d}\)
\(b_{1}\)
\(2f_{t} + 1\)
\(2f + 1\)
\(f_{t} + 1\)
\(f_{t}\)
\(3f_{t} + 1\)
\(\frac{1}{3}\)
\(S_{r}\)
\(W_{h}\)
\(C_{h}\)
\(\sigma\)
\(\sigma_{h}\)
\(\mathcal{x}\)
\(\mathcal{y}\)
\(\mathcal{x} – \mathcal{y} = 0\)
\(\mathcal{D}_{r}\)
\(\mathcal{x} – \mathcal{yz} \leq \mathcal{D}_{r}\)
(\mathcal{x} – \mathcal{yz} > \mathcal{D}_{r})
$$V_{sphere} = \frac{4}{3}\pi r^3$$
A DORA-CC protocol among \(n\) nodes \(p_1,p_2,\dots,p_n\) with each node having inputs \(v_i\), for a given agreement distance \(\mathcal{D}\), guarantees that:
Given an agreement distance \(\mathcal{D}\), we say that two values \(v_1\) and \(v_2\) agree with each other, if \(|v_1 – v_2| \leq \mathcal{D}\). That is, if two values differ at most by the agreement distance, then they are said to agree with each other.
A set of values \(CC\) is said to form a {\em coherent cluster}, if \(\forall v_1, v_2 \in CC: |v_1 – v_2| \leq \mathcal{D}\). In other words, a coherent cluster is a set of values where all the values in that set agrees amongst themselves.
Let \(S_r\) denote the \(S\)-value of round \(r\). A circuit-breaker function \(\frac{|S_r – S_{r-1}|}{S_{r-1}} \geq thr\) triggers and breaks the circuit (or halts the trade) when \(S_r\) deviates from \(S_{r-1}\) by more than some percentage threshold defined by \(thr\).
RECENT POSTS
Đăng ký nhận bản tin Supra để cập nhật tin tức, thông tin mới nhất, insight trong lĩnh vực Blockchain và nhiều hơn thế nữa.
©2025 Supra | Entropy Foundation (Thụy sĩ: CHE.383.364.961). Đã đăng ký Bản quyền