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Web3 applications based on blockchains regularly need access to randomness that is unbiased, unpre-
dictable, and publicly verifiable. A verifiable random function (VRF) protocol satisfies these requirements
naturally, and there is a tremendous rise in the use of VRF services. As most blockchains cannot main-
tain the secret keys required for VRFs, Web3 applications interact with external VRF services via a smart
contract where a VRF output is exchanged for a fee. However, a single VRF service node may become a
single point of failure. Therefore, the VRF service is deployed in a decentralized fashion as a committee
consisting of a number of nodes, each holding only a share of secret – the notion is called distributed VRF
(DVRF) and offers additional security properties such as consistency, robustness, liveness/availability and
strong pseudorandomness.

While this smart contract-based service offers the much-needed public verifiability immediately, it severely
limits the way a client can employ the VRF service: the VRF requests cannot be made in advance, and
the output cannot be reused. This introduces significant latency and monetary overhead. To resolve this
we extend the traditional notion of VRF by adding a novel output-privacy requirement, in that the VRF
output is only revealed to the client; everyone else, including the smart-contract and the service nodes
observes blinded/masked values. We call this notion Output-private VRF (PVRF) and incorporate it to
Supra’s VRF framework as an additional service (like its non-private counterpart this notion too supports
decentralization). In our design, we observe a moderate computational overhead of around 2x for VRF
service nodes to add output-privacy. The client may decide whether to go for a standard non-private VRF
or a output-private VRF based on the requirements.

This document elaborates on the entire VRF service provided by Supra. In particular, it includes the
definitions, technical details, security guarantees of Supra’s distributed VRF protocol and its output-private
counterpart. This document also provides the details of the VRF framework.
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1 Introduction

Verifiable Random Functions. Randomness is a precious resource in computing. With the gigantic rise
of blockchain technology and Web3 based applications, the demand for a reliable source of randomness has
increased enormously. However, given that the on-chain randomness-generation within a smart contract is an
expensive procedure, a natural approach is to delegate this to off-chain computation. Off-chain computations,
nevertheless, must be verified on-chain to ensure the integrity of computation. Verifiable random functions
enable such functionality. A Verifiable Random Function, V is a keyed deterministic function which, on an
input x, outputs a string y = Vsk(x). The secret-key sk is selected uniformly at random. Intuitively, the VRF
provides two main security guarantees: (i) pseudorandomness, which implies that, as long as the secret-key
is hidden, the output is indistinguishable from a uniform random string – this ensures both unpredictability
and unbiasability ; (ii) verifiability, which implies that given x, y and a proof π, anyone can publicly verify
that y is indeed computed correctly as Vsk(x) – such a proof is produced using the secret-key sk.

Distributed VRFs. If a single node holds the entire VRF secret key, then it becomes a single point of
failure – (i) if it is compromised, the adversary knows the key sk, and the VRF output is not unpredictable
anymore; (ii) if there’s a system/network issue with this node, the computation may not terminate. To mit-
igate these, in the Supra VRF framework we consider a variant of VRF, called Distributed VRF [GLOW21],
in that the secret-key is shared among many parties (let us denote them by P1, P2, . . . , Pn and call them
VRF clan) using a Shamir’s secret sharing scheme [Sha79],1 done using an appropriate Distributed Key-
generation (DKG) protocol. On an input x, each party Pi computes a partial evaluation-proof pair (yi, πi)
using their shares of secret-key ski. An aggregator, who may not hold any secret-key, can publicly gather
t < n such partial evaluations to aggregate them into the final output y and an accompanying proof π –
this procedure is public. Typically, a t out of n system is used, where any t + 1 parties together hold the
secret key (via Shamir’s secret-sharing), but no t or less parties can find out the key.2 In addition to the
above guarantees a DVRF provides more guarantees. Namely, it provides (i) consistency, which guarantees
that any t + 1 participants would yield the same output y for the same x – this is achieved immediately
by Shamir’s secret sharing. The distributed procedure is clearly more resilient than a centralized VRF. In
particular, a DVRF is resilient to ≤ t many Byzantine (a.k.a. malicious) faults, who might attempt to
collude. The pseudorandomness naturally extends to a stronger version, in that the adversary corrupts up
to t (possibly colluding) nodes and may take part into the execution through them – this is termed (ii)
strong pseudorandomness by Galindo et al. [GLOW21]. Furthermore, a major advantage of DVRF is to
have a (iii) liveness/availability guarantee, which ensures guaranteed output delivery as long as the number
of faulty/crashed nodes stay within a limit. To guarantee liveness we assume an honest majority n ≥ 2t+ 1.
Additionally we would require a (iv) robustness guarantee, which requires that any incorrect computation
by a VRF clan node is detected immediately (as opposed to only at the final verification time). Robustness,
and the honest majority assumption together gives liveness as long as there are at most t faulty nodes.

VRF Framework. In the blockchain industry many enterprises offer VRF as a service for a fee, in that
the service (consists multiple nodes in case of DVRF) and a user, such as a gaming platform, communicate
via a smart contract. Here, as detailed in Figure 3, the user makes a randomness request to the VRF service
via a smart contract. The smart contract then forms an input tag (INP) of a specific format (for more
details on the input formation, see Section 6.2) which is then sent to the VRF service via relay/aggregator
nodes. Upon receiving the partial responses from the VRF nodes, the relay/aggregator nodes aggregate
and forward the response to the smart contract. The smart contract verifies the response, records the VRF
output, invokes the callback function provided by the requester, and pays the VRF service.

Output-private DVRF. However, we identify a limitation for the standard smart-contract based frame-
work as described above. The issue is that the output becomes public, as soon as it appears in the smart
contract. This incurs a couple of limitations in its utility: (i) the requester cannot make its request in advance

1The definition of DVRF does not, however, require any specific secret sharing scheme. But since all our constructions are
based on that we use it as an integral part.

2We remark that Shamir’s secret sharing provides information theoretic security – this is the strongest possible security,
which guarantees that even if the corrupt parties have unbounded computational power, they can not recover the secret-key.
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towards having the randomness ready when the play begins. The request has to be synchronized with the
application. As a result, the use of publicly verifiable external randomness introduces a significant latency
overhead for the requester – it has to put the play on hold as it initiates and completes the VRF request. (ii)
as the output is public, it cannot be re-used by the requester in the future (for example using a counter-mode
hash3 to generate multiple random values to be used at different times when needed), which also results in
significant overhead w.r.t. gas cost and VRF service fee as the requester has to make individual requests
each time a new randomness is required. In a nutshell, this compels the requesting platforms (or user) to
carefully design their games/services such that their players/clients cannot exploit the public VRF outputs,
and furthermore, the latency and monetary overheads stay affordable.

We overcome these limitations of the VRF service by introducing a novel privacy primitive called Output
Private VRF (PVRF) and thereby adds significantly more flexibility to the Web3-based VRF services. While
maintaining all aforementioned properties of VRF, PVRF additionally ensures that the user alone can observe
the VRF output. The smart contract and anybody else can only observe a blinded-yet-verifiable version of
the output. In this setting, there is a designated user who alone is allowed to obtain the output y = Vsk(x).
In particular, no party within the VRF clan gets to see the output, but only a blinded value, which can only
be unblinded by the user. Nevertheless, the threshold computation is similar to that of the DVRF, but now
based on the blinded value. The blinded outputs are aggregated publicly (possible only if there are ≥ t+ 1
legitimate responses), and then the final blinded y is sent to the user, who then unblind it to obtain y. In
this paper we elaborate on this concept further, and put forward a distributed PVRF design by extending
our DVRF design. We provide basic intuitive arguments in favor of its security in this document. The full
formalization with rigorous provable security analysis is provided in an academic research paper [KMMM23].

Summary of content. In summary, this paper contains the following:

• The core DVRF algorithm we use in our VRF service.

• A new primitive PVRF, and an accompanying design.

• The end-to-end overall VRF service framework.

Our core DVRF algorithm is largely based on the DVRF construction called GLOW, presented by Galindo
et al. [GLOW21]. We present the construction using our notations. Our Output-private DVRF construc-
tion is achieved extending GLOW using ideas from a threshold oblivious PRF construction by Jarecki et
al. [JKKX17]. However, in that paper the main goal was to achieve “input privacy.” Instead, we aim to
achieve output privacy.

2 Related Work

VRF. The concept of VRF was introduced by Micali, Rabin and Vadhan [MRV99]. They first noticed the
similarities between VRFs and unique signatures (produces a unique signature for each message) Their con-
struction is based on RSA signatures. Later, this was improved by the work of Dodis and Yampolskiy [DY05]
– this construction is based on bilinear pairing and collision resistant hash functions, and is more efficient
than Micali et al.’s construction. Feasibility of “theoretically optimal”4 VRFs was settled by Hofheinz and
Jager [HJ16] – as expected, the design is not practical. This was later improved by Kohl [Koh19] and very
recently by Niehues [Nie21]. Nir Bitansky [Bit20] explores the relations between VRFs and other crypto-
graphic concepts such as non-interactive zero-knowledge proofs. Post-quantum secure VRFs were explored
by Esgin et al. [EKS+21]. In the practical regime, the most important construction was proposed by Gold-
berg et al. [GVPR18], which is being used by many enterprises such as Algorand and is now in the process

3One may use any standard hash function H, such as SHA3, and generates several random numbers as z1 = H(y, 1), z2 =
H(y, 2), z3 = H(y, 3), . . .. Of course, once y is public, all zis are predictable. Looking ahead, using our output-private VRF one
could ensure that y stays private to the user. Therefore, the outputs z1, z2, . . . can be used when required. However, without
y one can not verify zi. Therefore, the verification must be deferred to at a later time, say once z10 is used, and after that a
new VRF request must be made – the overall cost reduces by a factor of 10.

4By theoretically optimal we mean that the design was proposed only to satisfy theoretical interest with the minimal
assumption, standard model (for example, not in random oracle model), adaptive security etc.
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of IETF standardization. The VRF design combines a pseudorandom function and a simple zero-knowledge
proof of exponent (namely Schnorr’s [Sch90]). The designs elaborated in this paper are conceptually related
to this approach. In the rest of the paper we refer to this construction as GVPR.

Distributed VRF. Distributed VRF was first considered by the work of Dodis [Dod03], which requires a
trusted dealer. Kuchta and Manulis [KM13] proposed a generic construction based on aggregate signatures.
However, the most important work was done by Galindo et al. [GLOW21] who formalized the security
properties and analyzed three constructions. Crucially, they define a stronger variant of pseudorandomness,
called strong pseudorandomness which guarantees pseudorandomness of the output, even when a limited
number of partial evaluations are produced by the adversary. The first construction is a variant of distributed
PRF [AMMR18, NPR99], which is essentially a distributed counterpart of the GVPR construction with
appropriately adjusted zero-knowledge proofs and a specific distributed key-generation protocol (a variant
of Gennaro et al. [GJKR07]) – this is termed as DDH-DVRF. While the computation is very efficient, the
size of the final proof is proportional to the number of participants; the construction does satisfy strong
pseudorandomness. The second construction they considered is the one which was proposed and also used
by Dfinity [HMW18] – this is similar to DDH-DVRF, but uses bilinear pairing to enable a compact proof.
However, use of bilinear groups come with a cost over discrete log groups. The construction is very similar
to BLS signatures [BLS01] and is used in many places [Clo, Cor, DAO, SJSW19]. Galindo et al. showed
that Dfinity-DVRF, while providing compact proofs, does not satisfy strong pseudorandomness. Their
final construction is called GLOW – this was proposed in that paper. GLOW uses bilinear pairing for final
verification, but Schnorr’s proof of exponent for partial verification – as a result not only is security improved,
but the computation time is also improved by about 2.5x. The only cost is in terms of the size of partial
proofs, which increases a little, but still stays well within the allowed bandwidth. In our VRF service we
deploy this construction and an output-private variant of the same.

VRF Applications. Many blockchain services use VRFs internally as a crucial source of randomness. For
example, Cardano [Car] and Polkadot [Pol] implement VRFs for block production. Dfinity [HMW18] uses a
DVRF (namely Dfinity-DVRF, as mentioned above) for producing a decentralized random beacon. Chainlink
offers the most popular VRF service. Their VRF architecture essentially deploys the GVPR algorithm along
with some optimizations. However, from their description [Cha] it seems that their VRF secret-key is not
decentralized (in other words, they do not use a DVRF), and therefore, their scheme is susceptible to a single
point of failure. This means that if a specific node is compromised, the entire secret-key is known to the
attacker. Subsequently, given the secret-key, the output of the VRF is completely predictable. This paper
describes a VRF service which is inherently decentralized and thereby not vulnerable to a single point of
failure. Furthermore, even in the distributed setting, the underlying algorithms (based on GLOW) provides
stronger provable security assurances than Dfinity-DVRF.

3 Preliminaries

Notation. We use N to denote the set of positive integers, Z to denote the set of all integers and [n] to
denote the set {1, 2, . . . , n} (for n ∈ N). A tuple of values is denoted by the vector notation ~v = (v1, v2 . . .).
We denote the security parameter by κ. A security parameter is essentially the quantification of security
required from a scheme. For example, a security parameter can be set to 128 or 256 to get 128/256-bit
security. We assume that every algorithm takes κ as an implicit input and all definitions work for any
sufficiently large choice of κ ∈ N. We will omit mentioning the security parameter explicitly except in a few
places. We use negl(κ) to denote a negligible function in the security parameter; a function f : N → N is
considered negligible if for every polynomial p, it holds that f(n) < 1/p(n) for all large enough values of n.

We work on groups G of prime order p. For κ-bit security we require that p be a κ-bit prime. When
we say that a group G is a public parameter, we mean to say that its order is known and some generator is
agreed upon.

Throughout the paper we use the symbol ⊥ to denote invalidity; in particular, if any algorithm returns ⊥
that means the algorithm failed or detected an error in the process. We use D(x) =: y or y := D(x) to denote
the evaluation of a deterministic algorithm D on input x to produce output y. Often we use x := val to
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denote the assignment of a value val to the variable x. We write R(x)→ y or y ← R(x) to denote evaluation
of a randomized algorithm R on input x to produce output y. R can be determinized as R(x; r) =: y, where r
is the explicit randomness used by R. For a boolean condition b := (x = y) we denote that if x = y satisfies
then b gets the value 1, otherwise if x 6= y and the check fails it gets the value 0.

Adversarial Model. We are in a distributed setting, where the total number of nodes/parties is denoted
by n. Parties can be corrupt in an arbitrary malicious manner and also may collude with each other – this is
also known as Byzantine corruption. For any threshold computation, we assume that at least t+1 participants
are needed – looking ahead, this is guaranteed by t out of n Shamir’s secret sharing, in that any t+ 1 parties
can reconstruct the secret. We assume that at most f ≤ t parties can be maliciously corrupt. Looking ahead,
we always assume f = t < dn/2e – this restriction is required for the liveness/availability.5 Henceforth we
use f and t interchangeably, both denoting the “corruption threshold” as well as “reconstruction threshold.”
We assume a static model of corruption, where the set of corrupt parties are non-adaptive, which implies
the set of corrupt parties remain the same throughout the protocol execution.

Network Model. Each protocol presented here uses a sub-protocol for distributed key generation (DKG).
We do not specify the details of the DKG protocol. Once the DKG is done, only point-to-point channels are
required.

Families, Clans, Tribes. We use specific Supra terminologies for different groups of participants, classified
according to their fault tolerances. Any group of parties has two parameters, n denoting the number of all
parties and f denoting the maximum number of corrupt parties. Families refer to a group with dishonest
majority or any-trust, which has at least f + 1 parties; clans refer to one with honest simple majority that
is with at least 2f + 1 parties; and tribes to one with honest super majority that has at least 3f + 1 parties.
In this paper, the parties executing the distributed VRF protocols are in the honest simple majority setting
and hence are referred to as the VRF clan (as mentioned above). In Supra VRF Framework (Section 6),
we will be using relay/aggregator network, which requires an any-trust setting and thus is a family. The
optimized version uses Supra SMR Service which requires a honest super majority setting.

Polynomial Interpolation. A polynomial P (x) over a finite field F of degree t can be expressed as
P (x) = c0 + c1x + c2x

2 . . . ctx
t, where each coefficient is in F. Given any ` ≥ t + 1 evaluation points

P (j1), . . . , P (j`), where S = {j1, . . . , j`} there are scalars λi,j,S such that for any i ∈ N:

P (i) =
∑
j

λi,j,SP (j)

Importantly, the Lagrange coefficient λi,j,S corresponding to j depends on the set S and the evaluation point
at i and nothing else.

3.1 Building Blocks

Discrete Log groups. All constructions are based on cyclic groups of prime order, where the discrete
logarithm is hard. For a group G with any elements g and h = gx, we denote x = DLOGg(h) to denote the
discrete logarithm of h to the base g.

Bilinear Pairing. Our construction relies on bilinear pairing. We consider three groups G0,G1,GT , among
which the source groups G0, G1 and GT all are multiplicative groups6 of prime order p. The corresponding
generators are denoted by g0, g1 and gT . There is an efficiently computable map e : G0 ×G1 → GT which is

• bilinear: for any a, b ∈ Zp:

e(ga0 , g
b
1) = e(g0, g

b
1)a = e(ga0 , g1)b = e(g0, g1)ab

5This implies that even if t parties are corrupt, there will be at least t + 1 honest nodes available to finish the computation.
6In many places G0,G1 are considered as additive groups, in that case one has to replace the multiplication with addition

and subsequently exponentiation with scalar multiplication in our presentation
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• non-degenerate: e(g0, g1) 6= 1T where 1T is the (multiplicative) identity of group GT .

We assume a Type-3 pairing where not only the source groups G0 and G1 are distinct, but also there is no
efficiently computable isomorphism between them.

Shamir’s Secret Sharing [Sha79]. We use Shamir’s secret sharing scheme. Let p be a prime, and n, t
be positive integers such that t < n. An (n, t, p)-Shamir’s Secret Sharing ((n, t, p)-SSS for short) scheme is
a pair of algorithms (Share,Recon) that work as follows.

• Share(s) → (s1, . . . , sn). This randomized algorithm takes any field element s ∈ Zp as input. Then it
works as follows:

– Sample a uniform random polynomial P (x) = s + c1x + . . . ctx
t of degree t. This is done by

sampling each of the coefficients c1, . . . , ct uniformly at random from Zp. Note that P (0) = s.

– Output shares s1, . . . , sn where si = P (i). The tuple (s1, . . . , sn) is also denoted by Sharing(s, n, t).

• Recon(sj1 , . . . , sj`) =: s/⊥. The reconstruction is a deterministic procedure which takes a bunch of
shares sj1 , . . . , sj` each from the field Zp as input and then execute the following steps:

– If ` ≤ t, then output ⊥;

∗ Otherwise, if ` > t, use the Lagrange coefficients to compute: s = P (0) :=
∑
k λ0,k,Ssjk ;

∗ Finally output s.

Security: The scheme provides the following security guarantee: For any uniform random secret
s ←$ Zp, if (s1, . . . , sn) ← Share(s), then any ≤ t shares {si}i∈S such that |S| ≤ t do not reveal any
information about the secret s. More formally, given any ≤ t shares, s is still distributed uniformly at
random. This is an information theoretic fact.

NIZK for Knowledge of Exponent (Schnorr’s proof [Sch90]). Our construction uses non-interactive
zero-knowledge (NIZK) proof for knowledge of exponents. In particular, given a cyclic group G of prime
order p, an instance inst = (g, h) and witness wit = k such that k = DLOGg(h). Also consider a hash function
H : {0, 1}∗ → Zp. So the set of public parameters is defined as pp := (H,G), which is provided as an input
to all algorithms implicitly. Then the proof system consists of the following two algorithms:

• EqProve(inst,wit)→ π. This randomized algorithm takes an instance-witness pair (inst,wit) = ((g, h), k)
as input. Then it executes the following steps:

– randomly choose r ←$ Zp;
– compute α := gr ∈ G;

– compute c := H(g, h, α) ∈ Zp and s := r + k · c ∈ Zp.
– output the NIZK proof π = (c, s)

• EqVer(inst, π) =: 1/0. This deterministic algorithm takes an instance inst = (g, h) and a candidate
proof π = (c, s) as input. Then:

– compute α := gs · (xc)−1 ∈ G;

– output (c = H(g, h, α)) ∈ {0, 1}.

NIZK for Equality of Discrete Log [CP93]. Our construction uses non-interactive zero-knowledge
(NIZK) proof for equality of discrete logarithms, which is quite similar to the above proof. We highlight the
crucial differences in blue. In particular, given a cyclic group G of prime order p, an instance of the language
consists of the statement inst = (g, h, x, y) and witness wit = k such that k = DLOGg(x) = DLOGh(y). Also
consider a hash function H : {0, 1}∗ → Zp. So the set of public parameters is defined as pp := (H,G), which
is provided as an input to all algorithms implicitly. Then the proof system consists of the following two
algorithms:
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• EqProve(inst,wit)→ π. This randomized algorithm takes a statement-witness pair (inst,wit) = ((g, h, x, y), k)
as input. Then it executes the following steps:

– randomly choose r ←$ Zp;
– compute α := gr ∈ G; β := hr ∈ G;

– compute c := H(g, h, x, y, α, β) ∈ Zp and s := r + k · c ∈ Zp.
– output the NIZK proof π = (c, s)

• EqVer(inst, π) =: 1/0. This deterministic algorithm takes a statement inst = (g, h, x, y) and a candidate
proof π = (c, s) as input. Then:

– compute α := gs · (xc)−1 ∈ G;

– compute β := hs · (yc)−1 ∈ G;

– output (c = H(g, h, x, y, α, β)) ∈ {0, 1}.

3.2 (Distributed) Verifiable Random Functions

A verifiable random function scheme implements a deterministic keyed function V : {0, 1}κ × {0, 1}∗ →
{0, 1}γ . It yields pseudorandom strings. More precisely, the key k←$ {0, 1}κ is chosen uniformly at random;
then for any input x ∈ {0, 1}∗, the output y := Vk(x) is pseudorandom. Additionally, the scheme enables
a proof system for anyone to publicly verify whether y was computed correctly, given x and a proof. We
assume that all algorithms have access to public parameters.

Definition 1 (VRF). A Verifiable Random Function (VRF) consists of three algorithms (Keygen,Eval,Verify)
with the following description:

• Keygen(1κ)→ (sk, vk). The randomized key-generation algorithm takes the security parameter as input
and outputs a secret-key, verification-key pair.

• Eval(sk, vk, x) → (y, π). The evaluation algorithm takes the key-pair and any input x to produce an
output y and a proof of correct evaluation π. For a VRF function V , we denote y = Vsk(x).

• Verify(vk, (x, y, π)) =: 1/0. The verification algorithm takes the verification key and a triple of input,
output and proof to check whether the output was correctly produced from the input executing the
evaluation algorithm. If the check succeeds it outputs 1, otherwise it outputs 0.

They should satisfy the following requirements:

Correctness: It simply requires that a correctly generated value y = Eval(sk, vk, x) always verifies
successfully.

Uniqueness: If (x, y, π) verifies successfully, then y is uniquely determined by y = Vsk(x) – no other
y′ 6= y would verify successfully.

Pseudorandomness: For any given input x, if (y, π)← Eval(sk, vk, x), then y is pseudorandom to any-
one who does not know sk. Furthermore, this is true even when many tuples (x1, y1, π1), (x2, y2, π2), . . .
are provided such that (yi, πi)← Eval(sk, vk, xi) and xi 6= x for any i.

A distributed VRF protocol is executed between a number of mutually distrusting parties. To compute
a VRF function Vsk(x) all participants need to know the input x. Then they interact, after which everyone
gets the output y := V (x), if the protocol succeeds. Otherwise, if the execution fails no one receives any
output. Note that, participants can behave in an arbitrarily malicious (a.k.a. Byzantine) manner.

Definition 2 (DVRF). A distributed VRF (DVRF) is executed between n parties P1, . . . , Pn with a thresh-
old7 t < n. In contrast with the standard VRF defined above, it has the key-generation and evaluation

7Recall that, since we assume f = t, this denotes both the reconstruction threshold and the corruption threshold.

7



procedures distributed. We do not provide specific details of the distributed key-generation (DKG) proce-
dure here, instead we just mention the input and output. For the evaluation protocol, we describe a partial
evaluation algorithm which is run by each participant using its own secret share, and a public aggregation
procedure which aggregates the partial evaluations.

• The distributed key-generation protocol DKG: In this protocol no party has any input barring the
parameters (1κ, n, t) and the public parameters. Each party uses its own internal random coins to
generate messages which are then sent to the SMR channel. In the end, if the protocol execution
succeeds, a set of qualified participants, Q ⊆ {P1, . . . , Pn} of size t < |Q| = q ≤ n gets the verification

key tuple ~vk := (vk1, vk2, . . . , vkq) and a public key pk and each party Pi gets a corresponding secret
key-share ski.

• Partial Evaluation Part.Eval(ski, vki, x)→ (yi, πi): This randomized algorithm is run by each party Pi,
who uses their key-pair (ski, vki) to produce a partial output yi and a zero-knowledge proof of correct
partial computation πi.

• Aggregation algorithm Aggregate(pk, ~vk, x, (y1, π1), (y2, π2), . . . , (y`, π`)) =: (y, π): This algorithm gath-
ers ` many partial evaluations from the participating set S and proofs of correctness. If ` ≤ t (that is
|S| ≤ t), the algorithm just returns ⊥ to denote failure. Otherwise, if ` > t this algorithm proceeds to
verify each triple (vki, yi, πi) with respect to the public key pk. If less than t+ 1 verification succeeds,
then this algorithm returns ⊥; otherwise this algorithm returns a pair (y, π).

• The algorithm Verify is non-interactive and stays the same as the standard VRF.

Apart from satisfying the standard correctness guarantees described in Definition 1, they should satisfy the
following requirements:

Consistency. A successful execution of the protocol should produce the same value. y = Vsk(x),
irrespective of the participating set S, as long as there are at least t+1 participants (that is |S| ≥ t+1)
who provide correct partial evaluations.

Availability/Liveness. Even at most t parties are malicious corrupt and collude, they can not
prevent the honest parties from obtaining the output. This is also known as guaranteed output delivery
in the MPC literature (see, for example, Cohen and Lindell [CL14] for a formal definition).

Robustness: Assume that there is a malicious adversary which corrupts at most t participants within
the VRF clan throughout the protocol. Even in this case, if the aggregation does not fail (that is
returns a value which is not ⊥) despite running on adversarial partial evaluations, then the output
must verify successfully.

Strong pseudorandomness. Even if at most t participants are maliciously corrupt and collude
throughout the protocol, they are not able to distinguish between an output generated by applying
the VRF correctly y = Vsk(x) on an input and a uniformly random value from the output range –
this holds even if the colluding participants take part in several executions on inputs x1, x2, . . . such
that x 6= xi. Note that, through these executions, the colluding parties (possibly) learn not only
y1 = Vsk(x1), y2 = Vsk(x2), . . ., but also all the partial evaluations too. This additional information
makes the security requirement stronger than the non-interactive case (and hence the qualification
“strong”).

4 Supra core VRF Construction

In this section we describe the core algorithm used for our VRF, which we call Core-VRF. As mentioned
earlier, our core VRF algorithm is based on a construction put forward by Galindo et al. [GLOW21] called
GLOW. However, in contrast to their construction, we do not use a concrete DKG protocol. The rest
of the protocol is basically the same as GLOW. Before detailing the protocol we describe the ingredi-
ents/parameters:
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Ingredients

• Public parameters: The security parameter κ, the total number of parties n, a threshold t < dn/2e.
An efficiently computable Type-3 bilinear pairing e : G1 ×G2 → GT , where the groups G1,G2,GT are
multiplicative groups and each of prime order p. g1 and g2 are randomly chosen generators of G1 and
G2 respectively.

• Hash functions H1 : {0, 1}∗ → G1; H2 : G1 → {0, 1}γ ; H3 : {0, 1}∗ → Zp.

• A Shamir’s secret sharing scheme (that has two algorithms Share and Recon).

• A NIZK proof system (EqProve,EqVer) for equality of discrete log over group G1. The public parameter
for this NIZK system is given by {H3,G1}.

The protocol is detailed in Figure 1.

Core VRF Security. The consistency property is immediate from Shamir’s secret sharing. The availabil-
ity/liveness also follows directly from the bound f = t < dn/2e. To see robustness we notice that during the
aggregation procedure, each partial evaluation is verified individually. Since we use a sound NIZK system
for partial evaluation, a successful verification at this stage implies that each partial evaluation computes
correctly as H1(x)si . Therefore, the aggregated value too is indeed equal to H1(x)s. Once we are convinced
about this, the next step just follows from the correctness of the BLS signature.

Finally, strong pseudorandomness intuitively follows from the fact that, even if an attacker obtains up to
t partial evaluation on an input x, due to the security of secret sharing, the remaining partial evaluations
remain completely hidden/unpredictable – this leads to the unpredictability of the final proof π (which is
equal to z). Subsequently, the VRF output which is a hash value of the proof H2(π) remains pseudorandom.
However, a formal proof requires rigorous reduction to the underlying hardness assumption over the Type-3
bilinear group. In particular, as shown by Galindo et al. [GLOW21], the specific assumption needed here is
co-CDH [BDN18]. For formal proofs we refer to the Galindo et al. paper [GLOW21].

5 Output-private DVRF (PVRF)

In this section we introduce the concept of Output-private DVRF (PVRF). Intuitively, this is a distributed
protocol, in that a user U who holds the input x, sends a request to the VRF clan, who then runs the
protocol, at the end of which a blinded output is given to U , who then unblinds the output. Looking ahead,
in our construction when the user sends the request to the VRF clan, along with the input x, a blinded
input is also given, and the same blinding value is used later to unblind the output.

Definition 3 (PVRF). An Output-private DVRF is executed between n parties P1, . . . , Pn with a threshold
t < n and a user U . In contrast to DVRF, the syntax of PVRF has slightly different partial evaluation and
aggregation. Additionally, there are two non-interactive algorithms Blind and Unblind, both executed by the
user U . Major changes are highlighted by blue.

• The distributed key-generation protocol DKG: This is exactly the same as in the DVRF definition. In
this protocol no party has any input barring the parameters (1κ, n, t) and the public parameters. Each
party uses its own internal random coins to generate messages which are then sent to the SMR channel.
In the end, if the protocol execution succeeds, a set of qualified participants, Q ⊆ {P1, . . . , Pn} of size

t < |Q| = q ≤ n gets the verification key tuple ~vk := (vk1, vk2, . . . , vkq) and a public key pk and each
party Pi gets a corresponding secret key-share ski.

• Blinding Blind(x) → (x, v, π∗, st). This algorithm is a randomized procedure which outputs a blinded
input v an accompanying proof of correctness π∗ and a state st (to be used later during the unblinding
procedure).

• Partial Evaluation Part.Eval(ski, vki, (x, v, π
∗)) → (zi, πi). This randomized algorithm is run by each

party Pi with a common triple (x, v, π∗). Each party first verifies the pair (x, v, π∗), and if it fails, then
it outputs ⊥. Otherwise, each party uses its key-pair (ski, vki) to produce a blinded partial output zi
and a proof of correct partial computation πi.
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• DKG(1κ, n, t). Our distributed key-generation protocol takes the system parameters as input.

Once it concludes, parties in Q get the tuple of verification key ~vk = (vk1, vk2 . . . , vkq) and a public
key pk and each party receives a secret key ski where:

– For all i ∈ [q]: ski = si ∈ Zp such that (s1 . . . , sq) = Sharing(s, q, t) for a uniformly random
s ∈ Zp.

– For all i ∈ [n]: vki = gsi1 ∈ G1.

– pk = gs2 ∈ G2.

• Part.Eval(ski, vki, x)→ (yi, πi). The randomized partial evaluation algorithm is executed by each
party Pi on a given input x ∈ {0, 1}∗. It uses the key-share si = ski and the public verification
key vki = gsi1 and executes the following steps:

– Compute yi := H1(x)si ∈ G1.

– Compute the proof πi ← EqProve(inst,wit) where inst = (g1,H1(x), vki, yi) and wit = si.

– Output (yi, πi).

• Aggregate(~vk, x, {(yi, πi)}i∈S) =: (y, π). The aggregation algorithm gathers ` (yi, πi) pairs (say
|S| = `) and if ` ≤ t, then output ⊥. Otherwise, it executes the following steps for each i ∈ [`]:

– Check whether for each i ∈ S if EqVer((g1,H1(x), vki, yi), πi) succeeds (that is, outputs 1).
Record the successful (yi, πi) pair in a set T . If the number of successful partial verification
is insufficient, that is |T | ≤ t, then output ⊥. Otherwise go to the next step:

– Compute the aggregated value as z :=
∏
j∈T y

λ0,j,T

j ∈ G1 using Lagrange Interpolation in
the exponent. In other words, run the linear Recon algorithm in the exponent to reconstruct
the secret as z = H1(x)s ∈ G1.

– Compute the accompanying proof as π := z ∈ G1 and the aggregated value as y := H2(z) ∈
{0, 1}γ .

– Output (y, π).

• Verify(pk, (x, y, π)) =: 1/0 : The verification algorithm takes the public key pk and a pair (y, π) as
input is executed by any party as follows:

– Output result of the check (e(H1(x), pk) = e(π, g2)) ∧ (H2(π) = y)).

Figure 1: The Core-VRF Construction based on GLOW
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• Aggregation algorithm Aggregate(pk, ~vk, v, (z1, π1), (z2, π2), . . . , (z`, π`)) =: z. This algorithm gathers
` many blinded partial evaluations from the participating set S and proofs of correctness with respect
to the value v. If ` ≤ t (that is |S| ≤ t), the algorithm just returns ⊥ to denote failure. Otherwise, if
` > t this algorithm proceeds to verify each triple (vki, zi, πi) with respect to the public key pk. If any
verification fails, then this algorithm returns ⊥; otherwise this algorithm returns a blinded output z.

• The algorithm PreVer(vk, (v, z)) → 1/0 is non-interactive is similar to the standard DVRF, but now
with respect to the blinded values.

• Unblinding Unblind(st, z) → (y, π). The unblinding algorithm uses a state information (ideally gen-
erated during the blinding procedure) to unblind the value z to obtain the output y and also an
accompanying proof π.

• The algorithm Verify is non-interactive and stays the same as the standard VRF.

The requirements such as correctness, availability, consistency are the same as DVRF. The pseudo-
randomness and robustness are now changed slightly,8 in that the user U might also be corrupt (and
collude) along with up to t parties within the VRF clan. Finally, there’s an additional requirement, namely
output-privacy. Intuitively output-privacy ensures that, even if the adversary corrupts up to t servers, it
can not learn anything about the VRF output y from the communication transcript and the public values.
In the paper [KMMM23] we provide a fully formal definition following the strong universal composability
framework [Can01].

5.1 Supra PVRF Construction.

We describe our PVRF construction in Fig. 2. The construction combined ideas from GLOW [GLOW21]
and the threshold oblivious VRF construction of Jarecki et al. [JKKX17]. We show that this construction
satisfies our new PVRF notion (Definition 3), which guarantees output privacy. The changes from the
DVRF construction (Fig. 1) are highlighted in blue. First we describe the ingredients/parameters for the
construction below.

Ingredients

• Public parameters: The security parameter κ, the total number of parties n, a threshold t < dn/2e.
An efficiently computable Type-3 bilinear pairing e : G1 ×G2 → GT , where the groups G1,G2,GT are
multiplicative groups and each of prime order p. g1 and g2 are randomly chosen generators of G1 and
G2 respectively.

• Hash functions H1 : {0, 1}∗ → G1; H2 : G1 → {0, 1}γ ; H3 : {0, 1}∗ → Zp.

• A Shamir’s secret sharing scheme (that has two algorithms Share and Recon).

• A NIZK proof system (EqProve,EqVer) for equality of discrete log over group G1. The public parameter
for this NIZK system is given by {H3,G1}.

• A NIZK proof system (KExpProve,KExpVer) for knowledge of exponent in group G1. The public
parameter for this proof system is {H3,G1}.

PVRF Construction Security. Consistency, availability and correctness can be argued along the line
of the DVRF construction. For robustness, the setting slightly changes here, whence a new scenario arises:
in particular, what if the user is corrupt, colluding with t other parties and the triple (x, v, π∗) is not a
legitimate one, which means the verification within Part.Eval fails. In this case, to argue that robustness still
holds, we observe that within the qualifying set there exists at least one honest party, who can detect that
the triple is indeed illegitimate and output ⊥. Therefore, the adversarial parties would not have sufficient
partial evaluations to construct the final output. To prove pseudorandomness one needs to rely on a different,

8Notably, we do not consider a strong pseudorandomness, because of a technical reason – all partial evaluations are hidden
by the blinding factor, and hence do not give any additional information to the adversary.
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• The DKG protocol is exactly the same as the DVRF (Figure 1), and hence is skipped.

• Blind(x)→ (x, v, π∗, st). On input x, the blinding algorithm works as follows:

– Choose a random value ρ←$ Zp and define st := ρ.

– Compute v := hρ where h := H1(x).

– Compute a NIZK proof π∗ ← KExpProve((h, v), ρ) with the statement (h, v) and witness ρ.

– Output (x, v, π∗, st)

• Part.Eval(ski, vki, (x, v, π
∗)) → (zi, πi). The randomized partial evaluation algorithm is executed

by each party Pi on a given input x ∈ {0, 1}∗. It uses the key-share si = ski and the public
verification key vki = gsi1 and executes the following steps:

– Compute h := H1(x) and then verify the proof KExpVer((h, v), π∗) – if this fails then output
⊥, otherwise go the the next step.

– Compute zi := vsi ∈ G1.

– Compute the proof πi ← EqProve(inst,wit) where inst = (g1, v, vki, zi) and wit = si.

– Output (zi, πi).

• Aggregate(~vk, v, {(zi, πi)}i∈S) =: z. The aggregation algorithm gathers ` (zi, πi) pairs (say |S| = `)
and if ` ≤ t, then output ⊥. Otherwise, it executes the following steps for each i ∈ [`]:

– Check whether for each i ∈ S if EqVer((g1, v, vki, zi), πi) succeeds (that is, outputs 1). Record
the successful (zi, πi) pair in a set T . If the number of successful partial verifications is
insufficient, that is |T | ≤ t, then output ⊥. Otherwise go to the next step:

– Compute the aggregated value as z :=
∏
j∈T z

λ0,j,T

j ∈ G1 using Lagrange Interpolation in the
exponent. In other words, run the linear Recon algorithm in the exponent to reconstruct the
secret as z = H1(x)s ∈ G1 and output z.

• PreVer(pk, (v, z)) =: 1/0 : The pre-verification algorithm just uses a pairing verification between
blinded input and output.

– Output result of the check (e(v, pk) = e(z, g2)).

• Unblind(z, st) =: (y, π). The unblinding algorithm takes a blinded output z and a state st as inputs
and then works as follows:

– Parse ρ := st.

– Use ρ to unblind as π := zρ
−1

.

– Compute y := H2(π).

– Output (y, π).

• Verify(pk, (x, y, π)) =: 1/0 : The verification algorithm takes the public key pk and a pair (y, π) as
input is executed by any party as follows:

– Output result of the check (e(H1(x), pk) = e(π, g2)) ∧ (H2(x, π) = y)).

Figure 2: Supra PVRF Construction
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Input-Generation Partial-Eval.

GLOW-DVRF (MCL) - 253.304 µsec
PVRF (MCL) 307.079 µsec 403.059 µsec

GLOW-DVRF (RELIC) - 1.30304 msec
PVRF (RELIC) 1.67658 msec 2.5978 msec

Table 1: Average time taken for each step for GLOW-DVRF and PVRF for the BN256 curve, over 100
iterations. In the PVRF construction, the partial evaluation includes verifying the ZKP forwarded by the
user.

more complex assumption, called the Threshold Bilinear OMDH assumption, which is a variant of a similar
assumption introduced in the paper [JKKX17]. This can be seen by observing the structural similarities in
their threshold oblivious PRF and our PVRF constructions. Finally, output privacy follows partly from the
structural similarities with BLS signatures, and relies on a variant of CDH assumption (namely co-CDH)
over bilinear pairing. For full details we refer to our research paper [KMMM23].

Performance Analysis. We evaluate the performance of our PVRF construction and compare it with
the GLOW [GLOW21]. We implement [pvr] our PVRF by extending the GLOW-DVRF framework [Gal,
GLOW21] written in C++. The framework supports mcl [mcl] and RELIC [AGM+] cryptographic libraries.
See Section 6 for details.

In our PVRF construction, for a given input, the requester generates a random blinding value and a NIZK
proof of the correctness of the blinded input. The proof is a Schnorr signature-based proof of knowledge
of the DLog exponent. The proof consists of two elements, one scalar and one group G1 element. After
receiving the blinded input, each VRF node verifies the zero-knowledge proof before computing the partial
evaluation of the VRF. The requester receives the aggregated evaluation and unblinds the output private
VRF using the pre-computed blinding value to obtain the final VRF output.

We benchmark the different steps of the VRF computation using mcl [mcl] and RELIC libraries [AGM+]
for the BN256 curve. We run our single-threaded implementation on Mac OSX 2015 with an intel i7-
3.1GHz processor with 16GB RAM. With the MCL library, the requester takes ∼ 307µ sec on an average
for computing H(x)ρ (for the input x and the blinding factor ρ) and the zero-knowledge proof of exponent
r. Each VRF node verifies the zero-knowledge proof (ZKP) and then computes the H(x)ρ·ski for the secret
share ski. The partial evaluation, including verifying the ZKP per node, takes ∼ 403µ sec. Unblinding by
the requester involves one exponentiation and takes on an average ∼ 146µsec. The GLOW-DVRF which is
non-private, does not involve any input blinding, and the input message x is forwarded to the VRF nodes.
Each VRF node computes the partial evaluation H(x)ski , which takes ∼ 253µ sec per node on average.

The computation times for the steps of input-blinding at the requester and the partial evaluation at the
VRF node are presented in Table 1; the table provides the timings for the operations using both the mcl

and the RELIC libraries. The reported values are taken as a mean over 100 iterations over each operation.
The VRF output would be verified by a smart contract; though we do not deploy the smart contract, our
estimates indicate that the gas cost for the VRF verification on the BN256 curve would be ∼ 250k gwei.
Roughly, each partial evaluation becomes about 2x more computationally expensive to accommodate for
output-privacy.

6 Supra VRF Service Framework

Supra offers a VRF service, in that a randomness request from an user application is sent to VRF clan via
an external smart contract (e.g. Ethereum). Then the VRF clan sends their response back, which is verified
at the smart contract. We depict the message flow in the VRF service framework in Figure 3. To avail the
service any user first forwards their own input to the smart contract along with the callback function to be
called with the VRF output; this is indicated by step 1 in Figure 3. The smart contract may be running
on any blockchain service like Ethereum. When an input from the user is sent to the smart contract, after
verifying the input format and checking that the same value has not been requested previously, the smart
contract combines that with additional information (detailed below) forming the VRF input INP. The system
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Figure 3: Message flow during the evaluation of the VRF value by the VRF service nodes upon request from
a user. Steps 1-4 involve the request path where the user’s input is provided to the smart contract, which
then produces the VRF input (INP) that is sent to VRF clan via the relay family. Steps 5-9 involve the
response path, in that the VRF output, partially produced by VRF clan, aggregated at the relay family and
is then forwarded to the smart contract.

consists of relay nodes which monitor the smart contract; these relay nodes forward INP to the VRF service
nodes after verifying the legitimacy of the request (possibly by verifying a signature). Each of these nodes
generate a partial evaluation on the user input by running the Part.Evalski(INP) and forwards the evaluation
along with the (zero-knowledge) proof of correctness to the aggregator nodes. The relay nodes now acting
as aggregators, collect each of the partial evaluations from the different VRF clan nodes for each user input
forwarded. Whenever at least t + 1 partial evaluations are obtained, they run the Aggregate(·) algorithm
after verifying the zero-knowledge proofs. The final VRF output and an accompanying proof are sent to the
smart contract, which then verifies the correctness of the VRF output and if that succeeds, invokes the user
specified callback function with the VRF value as the input. Below we summarize the steps of Figure 3:

1. The user forwards its own input to the smart contract.

2. The smart contract combines user input to other values and produces the VRF input INP.

3. The relay nodes fetch the input, verify legitimacy of INP (for example, by verifying the signature
provided by the contract), whether it was previously used, and if all checks are satisfactory, forwards
INP to all nodes within the VRF clan.

4. Each node in the VRF clan computes the partial evaluation on INP with the zero-knowledge proof of
correct evaluation and sends them to the relay family nodes – now they act as aggregators.

5. When more than t partial evaluations are obtained at an aggregator node, they are aggregated to
compute the VRF output and an accompanying proof of correctness. The pair is then sent to the
smart contract as a response. The smart contract verifies the VRF output, and if that succeeds it
invokes the user-specified callback function.

Optimizing the VRF verification using batching. We use a slightly different architecture using the
Supra SMR service for optimization. In this architecture the smart contract processes a number of user
requests together in batches, producing individual INP for each of them. The relay nodes also process them
in batches, fetching a number of VRF inputs (say, INP1, INP2, . . .) and forwards them to the VRF clan.
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Figure 4: Message flow for optimized VRF service framework. The difference is that now many users are
making VRF requests. Each of them is processed within the smart contract individually, and then they are
forwarded to VRF clan in a batch – this is depicted in steps 1-4. Batched message flow is marked with a
thicker arrow. The main difference comes in step 7, when multiple aggregated values are forwarded to the
Supra SMR service, which verifies them individually, and for a batch of successfully verified VRF outputs
produces a single signature. The signature and the batch VRF outputs are sent to the smart contract, which
simply verifies the signature. The rest of the process is the same as for the unoptimized case.

A node (which holds the secret ski, say) in the VRF clan, verifies the legitimacy of each of the INPj and
responds with Part.Evalski(INPj) plus an accompanying zero knowledge proof of correctness. The relay nodes
then aggregate them to compute a batch of VRF outputs and accompanying proofs. The batch of VRF
outputs and proofs are then sent to the Supra SMR service as a transaction, which verifies each output
and then produces one single signature for the entire batch, if all of them are legitimate. The relay nodes
fetch the batch of VRF outputs (excludes individual proofs of correctness) and the signature from the Supra
SMR service and forwards them to the contract. The smart contract only verifies the signature and if that
succeeds, invokes each of the users’ call back functions with the respective VRF output values. Below we
summarize the steps of Figure 4, where main differences are highlighted in blue:

1. Multiple users forward their inputs to the smart contract.

2. The smart contract combines each user’s input with other values and produces multiple VRF inputs
INP1, INP2, . . ..

3. The relay nodes fetch the inputs, verify the legitimacy of each INPj (for example, by verifying the
signature provided by the contract), whether it was previously used, and if all checks are satisfactory
forwards INP1, INP2 . . . to all nodes within the VRF clan.

4. Each node in the VRF clan computes the partial evaluation on each INPj with the zero-knowledge
proof of correct evaluation and sends them to the relay nodes – now they act as aggregators.

5. The relay nodes aggregate the evaluations for each INPj once t + 1 partial evaluations are available,
and then send a batch of VRF outputs along with the accompanying proof to the Supra SMR service
as a transaction.

6. The SMR service verifies all output, proof pairs and then if all of them satisfy, generates a signature
for a batch of VRF outputs.
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7. The relay node fetches a batch of outputs and the signature from the Supra SMR service transaction
and forwards it to the contract.

8. The contract simply verifies the signature, and if that succeeds it invokes the user-specified callback
function the respective VRF output values.

Figure 5: Message flow during the evaluation of the private VRF. In this, after forming the input INP at
the smart contract, the user obtains it and blinds it. The blinded INP along with zero knowledge proof of
the blinding factor and the correctness of blinding is forwarded to the smart contract. The smart contract
verifies the zero knowledge proof, after which the relay nodes fetch the blinded INP.

6.1 Private VRF (without batching)

For the PVRF computation, the above framework stays the same in each case. However, the work-flow
changes slightly. In particular, initially when the user forwards its input to the smart contract, the smart
contract creates the VRF input INP and sends it back to the user, who then blinds INP and sends a pair
consisting of blinded INP and an accompanying zero-knowledge proof of correct blinding. The contract then
checks the proof, and if that succeeds, marks it “ok” – the relay nodes fetch the blinded input only if it is
marked “ok.” The rest of the work flow is the same as before (the smart contract will run PreVer instead
of Verify now). This is depicted in Figure 5. The callback function should run the Unblind algorithm on the
blinded output inside it to obtain the VRF output.

6.2 Constructing the VRF input, INP.

The VRF input is produced by the smart contract. Each input INP is a concatenation of the following values:

• User input – this is user’s chosen input and maybe empty.

• Block-hash – this is included to ensure that no one can request the input before the block-hash is
computed. This prevents one from pre-computing a VRF output to be used at a later time.

• Unique nonce –a unique nonce generated at the specific smart contract each time a VRF is called. This
ensures that each VRF input is different. For this the smart contract must keep a state (for example,
a counter).

• Chain id – this distinguishes inputs generated at two different blockchains (for example, Ethereum and
Solana).
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• User address – this is user-specific information to distinguish between requests from different users.

• Callback function name – this is included to distinguish between two different functions coming from
the same user at about the same time.

• DVRF or PVRF – this is a flag distinguishing between a PVRF and DVRF. This is a crucial input,
because without this a PVRF request maybe maliciously processed as a DVRF, leading to exposure of
the output.

7 Conclusion

In this paper we describe the Supra VRF service in detail. Specifically, we provide the definitions of VRF,
distributed VRF (DVRF) and output-private DVRF (PVRF) – among which PVRF is a novel concept
introduced in this paper. Then we provide Supra’s core-DVRF construction (GLOW [GLOW21]) and also
based on that a PVRF construction; we provide security intuitions for the constructions. Finally we elaborate
on the VRF service frameworks for DVRF, and an optimized batched VRF. We also provide the additional
changes one needs to make for the output-private versions. All our VRF protocols ensure decentralization of
the secrets at all times and achieve stronger security properties than the existing deployments. In our research
paper [KMMM23] we provide rigorous formalization and security proofs for our PVRF constructions.
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