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Abstract. Existing DAG-based BFT protocols experience reduced per-
formance as the system scales, primarily due to the bandwidth-intensive
replication of data across all participating parties. Fortunately, it is suffi-
cient to replicate data only to a sub-committee with an honest majority.
Additionally, much smaller committees can be formed that maintain an
honest majority with high probability.
In this work, we introduce a new primitive called tribe-assisted reliable
broadcast, which ensures reliable broadcast (RBC) properties within a
clan (an honest majority sub-committee). We refer to the entire net-
work as the tribe. We utilize this primitive to replace the standard RBC
primitives used in existing DAG-based BFT protocols to design two effi-
cient DAG-based BFT protocols. We first design an efficient single-clan
protocol, where a single clan is elected from the tribe and data is dissem-
inated exclusively to this designated clan using tribe-assisted RBC. We
then extend this approach to a multi-clan setting, where multiple clans
are elected, and data dissemination is confined to each respective clan
using the same mechanism. Our experimental evaluation demonstrates
that these protocols achieve significantly higher throughput compared to
state-of-the-art DAG-based protocols, while also improving latency, even
at moderately large system sizes.

1 Introduction

Byzantine fault-tolerant state machine replication (BFT SMR) serves as the core
building block for blockchain systems. BFT SMR allows a group of n parties
to reach consensus on a sequence of values, even in the presence of up to f
Byzantine parties, who may act in arbitrarily malicious ways. As blockchains
strive toward greater decentralization, it becomes critical for these protocols to
scale to hundreds of nodes while maintaining high throughput and low latency.

Similar to many recent low-latency real-world blockchain designs, we consider
the partially synchronous network [20], where BFT SMR requires f < n/3.
Traditional partially synchronous BFT SMR protocols can achieve a commit
latency as low as 3δ (where δ represents the actual network delay) [9,10,18] and
also achieve linear communication complexity [28,45]. However, their throughput
is significantly constrained, achieving only around 3K TPS [3]. This limitation
is largely due to their reliance on a single proposer design: only a designated
(rotating or fixed) leader proposes transactions and disseminates substantial
amounts of data across the network at a time, which creates a bottleneck and
hinders throughput.
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A novel approach called DAG-based BFT [24,25,37,39] has recently emerged
to address this challenge. This approach enables every party to propose con-
currently, thereby maximizing bandwidth utilization and resulting in improved
throughput. Additionally, the state-of-the-art DAG-based BFT protocols such
as Mysticeti [5], Sailfish [37], and Shoal++ [4], have demonstrated a commit la-
tency of 3δ, matching the single-proposer BFT protocols while achieving higher
throughput. Indeed, the experimental analyses demonstrate that these multi-
proposer DAG-based BFTs offer significantly better throughput without affect-
ing the latency for moderate network sizes. However, as the system scales be-
yond 100 geo-distributed nodes, these protocols often suffer a significant drop in
throughput, particularly due to bandwidth-intensive replication of data across
all parties. Notably, academic analyses of DAG-based BFTs generally consider
up to 100 nodes [4], and real-world blockchains like Sui [27] also operate with a
similar number of nodes. Is this decline in throughput inherent to DAG-based
protocols as the system scales? This paper seeks to answer this question.

Technical challenge. Most DAG-based BFT protocols [4, 37–39] rely on a re-
liable broadcast (RBC) primitive [8,29] to disseminate their proposals (referred
to as vertices), ensuring non-equivocation and guaranteed delivery of these pro-
posed vertices to all parties. These vertices typically contain large number of
transactions to promote good throughput, but as they are (reliably) dissemi-
nated across the entire network, they create a bottleneck as the system scales.
Additionally, once ordered, every party must execute all transactions, further
increasing the bottleneck as the system expands.

Key idea. We observe that only the consensus/ordering phase requires a super-
majority of honest parties with n > 3f participating parties with at most
f < n/3 [20] (assuming partially synchrony). Once a total ordering of the pro-
posed vertices is agreed upon, it is not necessary for all parties to execute the
transactions in these vertices. Equivocation is impossible after transactions are
ordered, and the committee responsible for executing transactions only requires
an honest majority to function correctly [44]. Particularly, in a (sub-)system
with nc < n parties and fc < nc being faulty, a client only needs consistent
responses from fc + 1 parties to ensure their transaction has been safely exe-
cuted. To address the possibility of up to fc faulty parties failing to execute or
sending inconsistent responses, we need nc − fc ≥ fc +1, and thus nc ≥ 2fc +1.
As a result, it is sufficient to disseminate the transaction to a committee with
nc ≥ 2fc + 1 parties, ensuring that at least fc + 1 honest parties execute the
transaction and respond to the client.

Furthermore, if parties are selected uniformly at random, we can form signif-
icantly smaller committees while maintaining the honest majority assumption
with only a negligible probability of failure statistically. For instance, in a system
of n = 500 parties and f = 166 faulty parties, a committee of just nc = 184
members suffices to ensure an honest majority with a negligible failure proba-
bility of 10−9, based on the hypergeometric probability distribution. We present
committee sizes at various system sizes in Figure 7. Leveraging this observation,
we elect smaller committees and confine the dissemination of larger payloads to
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these committees, thereby reducing bandwidth usage and enhancing throughput
and scalability. To simplify the explanation, we refer to the entire set of n parties
as a tribe and the honest majority committee of size nc as a clan.

A straw man approach and further challenges. With a clan, it is relatively
straightforward to disseminate the data solely to the clan and collect proof of
data availability (PoA), ensuring that at least one honest party has received the
data (with high probability) [30]. This PoA can then be provided to any SMR
protocol to establish a global ordering. Since consensus on metadata is generally
less costly, this method reduces overhead. However, this method introduces ad-
ditional latency due to its inherently sequential nature. Disseminating data and
collecting the PoA takes at least 2δ, and even if the PoA is included in the next
proposed consensus block, there is an average queuing delay of 1δ. Finally, the
commit latency for the proposed block is at least 3δ, resulting in a total latency
of at least 6δ.

In contrast, state-of-the-art DAG-based protocols [4, 5] avoid the additional
latency overhead from a separate data dissemination layer by embedding trans-
actions directly into vertices. By conducting data dissemination and consensus
concurrently, these protocols minimize latency. However, most DAG-based BFT
protocols rely on an RBC primitive which delivers the proposed vertices to all
parties in the network. As mentioned before, this can be bandwidth intensive,
making existing RBC mechanisms unsuitable for our specific requirements. This
paper focuses on improving the data dissemination layer while preserving the
latency performance of current DAG-based BFT protocols.

1.1 Our contributions

In this paper, we make three key contributions toward building a throughput-
efficient and scalable DAG-based BFT SMR:

1. Tribe-assisted Byzantine reliable broadcast. As a foundational building block,
we first introduce an asynchronous primitive that ensures agreement and even-
tual data delivery within a clan. It is well established that for agreement under
partial synchrony, f < n/3 is necessary [20], a condition that cannot be satisfied
within a clan that only has an honest majority. To achieve agreement within a
clan, we leverage the support of the entire tribe. In this regard, we refer to this
primitive as tribe-assisted reliable broadcast. We present two variations of this
protocol–the first protocol terminates in three rounds under an honest sender
and is signature-free, while the second protocol reduces termination to just two
rounds using signatures.

2. Single-clan DAG-based BFT. To tackle the scalability challenge, we propose
electing a smaller clan of parties that retains an honest majority with a high
probability. By employing tribe-assisted reliable broadcast, we limit data dis-
semination to this designated clan while ensuring that consensus on metadata is
executed across the entire network in parallel, avoiding additional latency over-
head. We call this protocol the single-clan DAG-based BFT. By restricting data
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dissemination to a single designated clan, this method reduces bandwidth con-
sumption and improves throughput and scalability. This approach is generic and
can be applied to existing DAG-based BFT protocols to enhance throughput and
scalability while maintaining security guarantees comparable to a system where
data dissemination and execution involve all parties.

3. Multi-clan DAG-based BFT. We extend the single-clan DAG-based BFT to
a multi-clan setting, where the entire tribe is partitioned into multiple disjoint
clans, each maintaining the honest majority assumption with negligible error
probability. Each clan independently disseminates and executes proposed data
and is responsible for responding to the clients. This protocol distributes the
workload across multiple clans, reducing the bandwidth bottleneck of a single
clan and improving throughput and scalability. It can be directly applied to
shared sequencers [33, 41, 42] that order transactions from independent applica-
tions and can also enhance performance in state-sharded blockchains [26,46,47].

Implementation and evaluation. We implemented and evaluated the perfor-
mance of both the single-clan and multi-clan protocols, comparing them against
Sailfish [37], the current state-of-the-art DAG-based BFT protocol. Our results in
a geo-distributed setting show that the single-clan DAG-based BFT significantly
outperforms Sailfish in terms of throughput across all system sizes, primarily due
to the reduced dissemination of data to fewer parties within the designated clan.
Interestingly, despite having the same theoretical latency in terms of the num-
ber of rounds, the single-clan DAG-based BFT also exhibited lower latency than
Sailfish. Additionally, we observed that the multi-clan DAG-based BFT outper-
forms both the single-clan DAG-based BFT and Sailfish in terms of throughput,
benefiting from the efficient distribution of data across multiple clans.

2 Preliminaries

We consider a system P := P1, . . . , Pn consisting of n parties out of which up
to f = ⌊n−1

3 ⌋ parties can be Byzantine, meaning they can behave arbitrarily.
The model of corruption is static i.e., the adversary picks the corrupted parties
before the start of protocol execution. A party that is not faulty throughout the
execution is considered to be honest and executes the protocol as specified.

We consider the partial synchrony model of Dwork et al. [20]. Under this
model, the network starts in an initial state of asynchrony during which the
adversary may arbitrarily delay messages sent by honest parties. However, after
an unknown time called theGlobal Stabilization Time (GST), the adversary must
ensure that all messages sent by honest parties are delivered to their intended
recipients within ∆ time of being sent. We use δ to characterize the actual
(variable) transmission latencies of messages and observe that δ ≤ ∆ after GST.
Additionally, we assume the local clocks of the parties have no clock drift and
arbitrary clock skew.

We employ digital signatures and a public-key infrastructure (PKI) to safe-
guard against spoofing, replay attacks, and to ensure message authenticity. A
message x digitally signed by party Pi using its private key is denoted as ⟨x⟩i,



Towards Improving Throughput and Scalability of DAG-based BFT 5

while ⟨x⟩ refers to an unsigned message x transmitted over an authenticated
channel. Additionally, we represent the hash of an input x by H(x), where H is
the hash function. For simplicity, we use the same parameter κ to denote both
the hash size and the signature size.

Tribe and clans. We define the entire system of n nodes as the tribe, where
up to f < n

3 nodes may exhibit Byzantine faults. A sub-committee within this
system, where the honest majority assumption holds, is referred to as a clan. In
a clan, the number of nodes is represented as nc, with at most fc < nc

2 being
Byzantine, except with a negligible probability of error.

Problem Definition. Following earlier works [24,37,39], we focus on the Byzan-
tine Atomic Broadcast (BAB) problem as defined below:

Definition 1 (Byzantine atomic broadcast [24,39]). In a BAB, each hon-
est party Pi ∈ P can call a bcasti(m, r) to propagate its input m in some round
r ∈ N. Each party Pi then outputs a deliveri(m, r, Pk), where Pk ∈ P represents
the sender of the message. A Byzantine atomic broadcast protocol satisfies the
following properties:

– Agreement. If an honest party Pi outputs a deliveri(m, r, Pk), then every
other honest party Pj eventually outputs a deliverj(m, r, Pk).

– Integrity. For every round r ∈ N and party Pk ∈ P, an honest party Pi

outputs a deliveri at most once regardless of m.
– Validity. If an honest party Pk calls a bcastk(m, r) then every honest party

eventually outputs a deliver(m, r, Pk).
– Total order. If an honest party Pi outputs a deliveri(m, r, Pk) before a deliveri(m

′, r′, Pℓ),
then no honest party Pj outputs a deliverj(m

′, r′, Pℓ) before a deliverj(m, r, Pk).

3 Tribe-assisted Reliable Broadcast

In this section, we introduce a primitive that ensures all honest parties within
a clan reach agreement on a value and guarantees eventual delivery with the
support of the entire tribe. We refer to this primitive as tribe-assisted reliable
broadcast. We first formally define the tribe-assisted reliable broadcast primitive.
We denote the parties in a clan by Pc which has an honest majority (except with
negligible error probability).

Definition 2 (Tribe-assisted reliable broadcast). Let a designated sender
Pk invokes r bcastk(m, r) to propagate its input m in some round r ∈ N. Each
party Pi outputs r deliveri(y, r, Pk) where y = m when Pi ∈ Pc and y = H(m)
when Pi ̸∈ Pc, Pk is the designated sender and r is the round number in which
sender Pk sent the message m. The tribe-assisted reliable broadcast primitive
satisfies the following properties:

– Validity. If an honest party Pk calls r bcastk(m, r) then each honest party
Pi eventually outputs r deliveri(y, r, Pk) where y = m when Pi ∈ Pc and
y = H(m) when Pi ̸∈ Pc.
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r bcastk(m, r)
1. The sender Pk sends ⟨VAL,m, r⟩ to each party Pi ∈ Pc and ⟨VAL, H(m), r⟩ to

party Pi ̸∈ Pc.
2. Upon receiving the first ⟨VAL, y, r⟩, party Pi sends ⟨ECHO, H(m), r⟩ to all parties

(where y = m when Pi ∈ Pc and y = H(m) when Pi ̸∈ Pc).
3. Upon receiving 2f + 1 distinct ⟨ECHO, H(m), r⟩ messages with at least fc +

1 ⟨ECHO, H(m), r⟩ messages from Pc, party Pi sends ⟨READY, H(m), r⟩ to all
parties.

4. Upon receiving f + 1 distinct ⟨READY, H(m), r⟩ messages, if ⟨READY, H(m), r⟩
has not been sent, party Pi sends ⟨READY, H(m), r⟩ to all parties.

5. Upon receiving 2f + 1 distinct ⟨READY, H(m), r⟩ messages, party Pi performs
the following:
– If party Pi ∈ Pc and has received value m, invoke r deliveri(m, r, k); other-

wise download value m from parties in Pc and invoke r deliveri(m, r, k).
– If party Pi ̸∈ Pc, invoke r deliveri(H(m), r, k).

Fig. 1: Tribe-assisted Byzantine reliable broadcast based on [8]

– Agreement. If an honest party Pi outputs r deliveri(y, r, Pk), then each
honest party Pj eventually outputs r deliverj(y, r, Pk) where y = m when
Pi ∈ Pc and y = H(m) when Pi ̸∈ Pc.

– Integrity. For every round r ∈ N and party Pk ∈ P, an honest party Pi

outputs r deliveri at most once regardless of m.

Next, we present a candidate protocol in Figure 1. This construction is based
on Bracha’s RBC protocol [8]. Similar to Bracha RBC, this protocol is signature-
free and requires three rounds in the good case when the sender is honest. Al-
ternatively, we can extend the RBC protocol of Abraham et al. [2] to achieve
better latency, which will be discussed later in Appendix C.

Protocol details. In this protocol, the sender Pk with input value m sends
⟨VAL,m, r⟩ to each party Pi ∈ Pc for some round r, while it sends only the
digest (i.e., H(m)) to the parties outside the clan. Upon receiving the value
m, each party Pi ∈ Pc sends ⟨ECHO, H(m), r⟩. Parties outside the clan send
⟨ECHO, H(m), r⟩ upon receiving just the digest.

An honest party then sends a READY message for the value m when it
receives 2f + 1 distinct ⟨ECHO, H(m), r⟩ messages, with at least fc + 1 of those
coming from parties in Pc. Note that the clan has at most fc Byzantine parties
(except with negligible error probability). Thus, waiting for at least fc+1 ECHO
messages from parties in Pc ensures that at least one honest party in Pc has
received the value m. This allows other parties in Pc to download value m at a
later point when required. Additionally, a party can also send a READY message
if they receive f + 1 READY messages for m and have not yet sent a READY
message.

Upon receiving 2f +1 ⟨READY, H(m), r⟩ messages, an honest party Pi ∈ Pc

can deliver m if it has already received the value m. If it has not yet received
the value, it can download m from other parties in Pc and then deliver it. As
previously mentioned, if an honest party sends a ⟨READY, H(m), r⟩ message, it
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guarantees that at least one honest party in Pc has received the value m, making
it possible to retrieve m at this stage. Finally, parties outside the clan deliver
H(m) upon receiving 2f + 1 ⟨READY, H(m), r⟩ messages.

Communication complexity. Let ℓ be the size of the value m. An honest
sender sends the ℓ-bit message to parties in Pc and a κ-bit digest to parties in
P \Pc, resulting in a communication complexity of O(ncℓ+ κ(n−nc)). The all-
to-all multicast of ECHO and READY messages incurs a complexity of O(κn2).
Therefore, the overall communication complexity is O(ncℓ + κn2) in the good
case when the sender is honest.

However, when the sender is Byzantine, only a subset of honest parties in
Pc may receive the value m, but all honest parties could still gather 2f + 1
READY messages for m. In this scenario, the honest parties in Pc would need to
download the valuem from other honest parties who have received it. To expedite
the retrieval, the honest parties may request the value from a linear number of
parties, which could lead to an increase in communication complexity, reaching
up to O(n2

cℓ+ κn2).

Remark on communication complexity. Our protocol allows parties to
download or pull missing data. This feature could be exploited by Byzantine par-
ties, who might repeatedly request the data, potentially leading to unbounded
communication complexity. To mitigate such an attack, parties can be rate-
limited, effectively bounding the communication complexity in practice.

Theoretical RBC protocols [8,16,29] typically only support data being pushed,
without allowing parties to pull the data. Despite this, these protocols can still
encounter unbounded communication in practice. The assumption is that par-
ties communicate over reliable links, often implemented using the TCP proto-
col [11]. In such setups, a sender continues transmitting data until it receives
an acknowledgment from the receiver. If the receiver is Byzantine, it may never
send an acknowledgment, causing the sender to continuously transmit the data,
leading to unbounded communication. However, in practical systems, it is usu-
ally assumed that Byzantine parties do not disrupt the network layer to trigger
such unbounded communication.

Additionally, theoretical RBC protocols often leverage erasure and error-
correcting codes [34] to improve worst-case communication efficiency. While
these techniques enhance communication in the worst case, they also intro-
duce overhead in terms of encoding, decoding, and verifying the erasure-coded
chunks [12], which can degrade performance under normal conditions. Since most
nodes in practice are honest, many practical implementations [14,35] avoid using
erasure codes. Instead, the sender multicasts the proposed value to all parties,
and the parties exchange ECHO and READY messages on the digest of the value
and download missing values at a later point. This approach offers better per-
formance in typical scenarios.

We present a detailed security analysis in Appendix B.
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4 Single-clan DAG-based BFT

In this section, we introduce an efficient and scalable architecture for a DAG-
based BFT protocol that limits data dissemination and execution to a single
designated clan of parties while maintaining security guarantees comparable to
those of a system where transaction dissemination and execution occur across
the entire network.

Structural overview of DAG-based BFT. A DAG-based BFT protocol pro-
gresses through a series of rounds. In each round r, each party proposes a single
vertex using the RBC primitive [8,16] to ensure non-equivocation and guarantee
that all honest parties eventually deliver the vertex. Each vertex v contains a
block of transactions, and references to at least 2f +1 vertices from round r− 1
and up to f vertices from earlier rounds (i.e., rounds < r − 1), provided there
is no path from v to these earlier vertices. These references form the edges in
the DAG, with the references to 2f + 1 round r − 1 vertices serving as strong
edges and references to earlier rounds as weak edges. A path from vertex vk to
vertex vℓ following the strong edges is called a strong path. The strong edges
and strong paths are crucial for committing vertices within the DAG, while all
edges contribute to the total ordering of the vertices. The commit and total or-
dering rules are specific to each protocol. We encourage readers to refer to the
respective protocols [37–39] for detailed information on these rules. A pictorial
representation of the DAG construction is presented in Figure 5 (in appendix).

The references, along with the edges and paths they create, are essential
for committing and totally ordering the vertices. Therefore, it is necessary to
propagate these references to all parties in the system. However, the block of
transactions only needs to be (reliably) disseminated to a designated clan of
parties, who will execute the transactions and respond to the client. This obser-
vation is fundamental to designing an efficient and scalable DAG-based BFT.

Towards efficiency with scalability. As previously discussed, a block of trans-
actions within a vertex can be substantial, making dissemination to all parties
bandwidth-intensive, thereby limiting scalability and throughput. To mitigate

Local variables:
struct vertex v: ▷ The struct of a vertex in the DAG

v.round - the round of v in the DAG
v.source - the party that broadcast v
v.block digest - the digest of the corresponding block of transactions
v.strongEdges - a set of vertices in v.round− 1 that represent strong edges
v.weakEdges - a set of vertices in rounds < v.round−1 that represent weak
edges
v.nvc - a no-vote certificate for v.round− 1 (if any)
v.tc - a timeout certificate for v.round− 1 (if any)

struct block b:
b.txn - a list of transactions

Fig. 2: Basic data structures. The core structure is adapted from Sailfish [37].
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this bottleneck, we randomly elect a clan of parties, ensuring with high prob-
ability that the clan has an honest majority. The block of transactions is then
disseminated reliably only to this designated clan, which substantially reduces
overall bandwidth consumption. In contrast, references to vertices from earlier
rounds are generally much smaller, especially in moderately-sized networks, mak-
ing the distribution of this metadata to all parties introduce minimal overhead.

To further optimize the propagation of vertices, we modify the vertex struc-
ture to contain only the digest of the block of transactions. The updated data
structures are shown in Figure 2. The actual block of transactions is placed in a
separate block structure, which is sent exclusively to the designated clan, while
the vertex itself is propagated to the entire tribe. For block dissemination, we
can leverage our tribe-assisted RBC protocol, whereas the standard RBC pro-
tocol is used to propagate the vertex. However, this approach increases message
(and computation) complexity.

Efficiently propagating the vertex and the block. To efficiently propagate
both the vertex and block, we merge the two RBC instances. Let v be a vertex,
b be its associated block, and C be the designated clan. The sender broadcasts
vertex v to all parties in the tribe but sends block b only to members of C.
Members of C send an ECHO message (as part of the RBC) only after receiving
both v and b, while parties outside C send an ECHO after receiving just v,
which includes the digest of block b. The READY message is sent upon receiving
2f + 1 ECHO messages with at least fc + 1 from the clan C, or upon receiving
f + 1 READY messages. This combined approach maintains the guarantees of
standard RBC, as C always includes at least fc+1 honest members, except with
negligible error probability. It effectively integrates tribe-assisted RBC for block
propagation with standard RBC for the vertex.

Obtaining single-clan DAG-based BFT. Our scaling technique can be ap-
plied to any existing DAG-based BFT protocol that relies on RBC, such as
Bullshark [40], Shoal [38], and Sailfish [37], with minimal modifications. The
only necessary adjustment is in how these protocols propose a vertex: instead of
broadcasting the vertex and the block together, they are propagated separately.
The DAG construction, commit, and ordering rules remain unchanged, consis-
tent with the original DAG-based BFT protocols. After the ordering process
is complete, only the parties within the clan will execute the transactions and
respond to the client.

Additionally, the enhanced protocol maintains the good-case commit latency
of the original protocol. For example, in Bullshark [40], the protocol would still
commit the leader vertex (proposed by the round’s leader) with a latency of two
RBCs. Similarly, in Sailfish [37], the leader vertex would be committed with a
latency of one RBC, plus 1δ.

When using tribe-assisted RBC to propagate vertices, parties may need to
download missing blocks if the sender is Byzantine, which introduces additional
latency. However, this does not affect the protocol’s progress or commit latency.
In standard DAG-based BFT protocols, the protocol advances to round r+1 once
a sufficient number of RBCs from round r have been delivered. In our enhanced
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protocol, it proceeds to the next round upon receiving 2f + 1 READY messages
from a sufficient number of RBCs, even before downloading the associated blocks.
This ensures the protocol’s progress remains unaffected.

Moreover, parties can commit the vertex, which includes the block digest,
even before the block itself has been delivered. Typically, transaction execution
lags behind consensus. Parties can begin requesting the missing blocks as soon
as they receive 2f + 1 ECHO messages, including at least fc + 1 from the clan
C i.e., before receiving 2f + 1 READY messages. This can ensure that missing
blocks are delivered before execution begins.

On the security of single-clan DAG-based BFT. Existing DAG-based
BFT protocols [37–39] rely on theoretical RBC primitives [8,16,29] to propagate
proposed vertices, which consist of both blocks of transactions and references.
These RBC primitives guarantee agreement, (eventual) guaranteed delivery, and
timely delivery (after GST). These properties are essential to ensure the security
guarantees of the protocol, as outlined in Definition 1.

In our protocol, we use a tribe-assisted RBC to disseminate blocks exclusively
to a designated clan. This mechanism retains the same agreement and eventual
guaranteed delivery properties, except for a negligible probability of error. While
parties may need to download missing blocks, introducing some additional la-
tency, the missing blocks can be retrieved without affecting the overall progress
of the protocol. Thus, tribe-assisted RBC does not compromise the security of
protocols relying on it, except in the unlikely scenario of a dishonest majority
forming within the clan, which has a negligible probability.

Communication complexity. Let ℓ denote the size of a block of transactions.
Existing DAG-based BFT protocols would incur at least O(n2ℓ+ κn3) commu-
nication overhead. By employing tribe-assisted RBC to disseminate the block,
our protocol improves the communication to O(n2

cℓ+ κn3) in the good case.

Statistical security analysis. When a single clan is randomly elected from
the entire network, the probability of forming a dishonest majority clan can
be computed using the hypergeometric probability distribution. This analysis is
provided in detail in Appendix D.1.

Operating cost reduction. Disseminating large amounts of data across the en-
tire network can be expensive due to higher data transfer fees between data cen-
ters. Additionally, machines with a larger number of cores are needed to execute
transactions in parallel and reduce latency. As a result, executing transactions
and disseminating data across the entire network can become cost-prohibitive.
Our single-clan design mitigates this by confining data dissemination and trans-
action execution to a smaller, designated clan. Only this clan needs high-capacity
machines, reducing overall system costs and transaction fees.

Remark. Our scaling techniques are applicable to DAG-based BFT protocols
that rely on RBC, such as [4, 37–39]. Some other approaches, like Cordial Min-
ers [25] and Mysticeti [5], utilize best-effort broadcast (BEB) to reduce latency in
failure-free scenarios but are more vulnerable to increased latency under Byzan-
tine behavior [4]. Our technique does not directly extend to such BEB-based
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protocols, and exploring how to support these protocols presents an interesting
avenue for future work.

5 Multi-clan DAG-based BFT

In the earlier design, a single clan was responsible for handling data for the entire
tribe and executing transactions, potentially overwhelming the clan. To mitigate
this, we propose a design that partitions the tribe into multiple disjoint clans.
Each clan independently disseminates and executes the data proposed within
its own group and is responsible for responding to clients. This approach pre-
serves security guarantees comparable to those of a system where transaction
dissemination and execution occur across the entire network. It is particularly
well-suited for applications such as shared sequencers [33, 41, 42], which are de-
signed to order transactions from independent applications.

Obtaining Multi-clan DAG-based BFT. We partition the entire tribe into
multiple clans, denoted as i.e, C1, . . . , Cq, where q is the number of clans de-
termined by the desired error probability. Additionally, we employ the modi-
fied data structure where the block of transactions is separated, and the vertex
structure contains only the digest of the block (as shown in Figure 2). The block
of transactions is then (reliably) disseminated solely within its respective clan,
ensuring that bandwidth consumption is evenly distributed across the clans.
Furthermore, each clan is responsible for executing the committed transactions,
thus distributing the processing load across all clans. As mentioned earlier, ref-
erences to vertices are crucial for committing the proposed vertices and must
be propagated to the entire tribe. Since these references are generally smaller in
size, disseminating this metadata to all parties imposes minimal overhead.

As before, the parties in a clan can use the tribe-assisted RBC to disseminate
the block within their respective clan and the standard RBC to disseminate the
vertex to the entire tribe. This is done in a combined manner, where parties in a
clan send an ECHO message only after receiving both the block and the vertex.
The remaining components of the DAG-based BFT protocol, such as DAG con-
struction, committing, and ordering the proposed vertices, remain unchanged.
Although the block is disseminated only to the respective clan, the ordering of
the vertex (and its corresponding block) happens globally, meaning the trans-
actions in the block are globally ordered. Once the underlying DAG-based BFT
protocol has ordered the proposed vertices, the respective clan members can
execute the transactions and respond to the client.

The security of the multi-clan DAG-based BFT is derived from the security
guarantees of the underlying DAG-based BFT protocol and the tribe-assisted
RBC. Since tribe-assisted RBC may fail with a negligible probability, the same
holds true for multi-clan DAG-based BFT, with failure occurring only with neg-
ligible probability.

Application to state-sharded blockchains. Multi-clan DAG-based BFT can
be directly applied to scenarios like shared sequencers for ordering transactions
from independent applications without inter-application dependencies. It is also
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applicable in state-sharded blockchains [15, 26, 47], where the user space of a
blockchain is partitioned into multiple shards to group frequently interacting
users within a shard. In such blockchains, each shard is managed by a dedi-
cated clan. Intra-shard transactions are processed within the shard, while cross-
shard transactions require synchronization across shards, handled by protocols
like two-phase commit. Extensive literature exists on efficiently managing cross-
shard transactions [15, 46, 47], which can be extended to multi-clan DAG-based
protocols.

Statistical security analysis. When the entire network is partitioned into
multiple clans, the hypergeometric distribution is no longer applicable, requiring
slightly complicated analysis. We present this analysis in Appendix D.2.

6 Evaluation

We evaluate the performance of both the single-clan and multi-clan protocols,
comparing their throughput and latency with the state-of-the-art DAG-based
BFT protocol, Sailfish [37].

Implementation details. We use Sailfish as the underlying DAG-based proto-
col. Sailfish commits leader vertices with a latency of 3δ and non-leader vertices
with 5δ. Multi-leader Sailfish supports multiple leaders per round, committing
all leader vertices with 3δ latency. We modify the open-source Sailfish imple-
mentation [36] to develop both the single-clan and multi-clan versions, naming
them single-clan Sailfish and multi-clan Sailfish, respectively.

To minimize latency, we use the round-optimal RBC protocol [2] for vertex
propagation and a two-round tribe-assisted RBC protocol (cf. Appendix C) for
block propagation. For efficiency, we combine these RBC processes, where clan
members send ECHO only after receiving both the vertex and block (detailed in
Section 4). Following Sailfish, this results in a commit latency of 1RBC + 1δ (i.e.,
3δ). In our implementation of the round-optimal RBC [2], we avoid forwarding
the sender’s proposal and instead download missing proposals off the critical
path of consensus if needed, reducing communication overhead in failure-free
cases. As noted earlier, retrieving missing vertices off the critical path does not
slow down consensus or increase commit latency.

We used RocksDB for persistent storage of the consensus data and BLS multi-
signatures [7] for authentication, significantly reducing the size of signatures that
need to be multicast. While BLS multi-signatures are computationally expensive
to verify, we optimize this by aggregating individual signatures without upfront
verification and verifying only the aggregated signature. In case the aggregated
signature fails verification due to a Byzantine party’s incorrect signature, in-
dividual signatures are verified to identify and penalize the faulty party. This
approach avoids the overhead of verifying individual signatures in the typical
case where all nodes sign correctly.

Experimental setup. We carried out our evaluations on the Google Cloud
Platform (GCP), distributing nodes evenly across five distinct GCP regions: us-
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east1-b (South Carolina), us-west1-a (Oregon), europe-north1-a (Hamina, Fin-
land), asia-northeast1-a (Tokyo), and australia-southeast1-a (Sydney). We em-
ployed e2-standard-32 instances [31], each featuring 32vCPUs, 128GB of mem-
ory, and up to 16Gbps network bandwidth [32]. All nodes ran on Ubuntu 20.04,
and we summarize round-trip latencies in Table 1 in the appendix.

In our evaluations, each party generates a configurable number of transac-
tions (512 random bytes each) for inclusion in its proposal, with a proposal
containing up to 4000 transactions (i.e., 2 MB). Latency is measured as the av-
erage time between the creation of a vertex and its commit by all non-faulty
nodes. Throughput is measured by the number of committed transactions per
second. Note that our evaluation does not include transaction execution.

Methodology. In our evaluations, we gradually increased the number of input
transactions per proposal. As shown in Figure 3, throughput increases with the
load, accompanied by a slight increase in latency, up to a certain point before
reaching saturation. Beyond this point, latency begins to rise while throughput
either stabilizes or increases marginally.

Performance of single-clan Sailfish. Large-scale geo-distributed experiments
are inherently costly. To reduce the expense of running these experiments, we
opted for a slightly higher failure probability of 10−6 ≈ 2−20, which remains
reasonable for many practical applications. With this failure probability, we can
have clans of 32, 60, and 80 nodes for system sizes of 50, 100, and 150 respectively.

We distributed clan nodes evenly across GCP regions and evaluated the per-
formance of Sailfish and single-clan Sailfish for system sizes of 50, 100, and 150
nodes. The corresponding throughput and latency results are shown in Figures 3
and 4a. Consistent with our theoretical analysis, single-clan Sailfish provides bet-
ter throughput compared to Sailfish across all system sizes. This improvement is
due to data being disseminated only to the designated clan, reducing bandwidth
consumption. The difference in throughput becomes more pronounced as the
system grows, as the clan size increases slowly relative to the system size.

For a fixed system size, single-clan Sailfish showed lower commit latency com-
pared to Sailfish. This is because only the designated clan received the full block
of transactions, while the rest of the parties received only the vertex, allowing
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quicker delivery. In tribe-assisted RBC, only fc + 1 ECHO messages are needed
from the clan, with the rest coming from the tribe. Since the vertex propagates
faster, tribe-assisted RBC finishes sooner than standard RBC, leading to better
latency in single-clan DAG-based BFT.

Commit latency for both protocols increased as the system size grew, pri-
marily due to the increased number of cryptographic operations. Specifically,
the commit latency for minimal payload across all protocols was around 380ms
at n = 50, while it increased to approximately 1392ms at n = 150. In our
implementation, BLS signature aggregation was performed on a single thread
while verification of the aggregated signature was performed in parallel. This
contributed to a significant increase in latency at n = 150. There is potential to
reduce these latencies with an optimized implementation.

Performance of multi-clan Sailfish. Next, we evaluate the performance of
multi-clan Sailfish. To form multiple clans with an acceptable failure probability,
the system size must be sufficiently large. For n = 150, we can form two clans
with a failure probability of 4.015× 10−6 ≈ 10−6, as analyzed in Appendix D.2.
Therefore, we evaluate the multi-clan protocol only at n = 150. We limit our
evaluations to n = 150 due to the high cost of running these experiments. Fig-
ure 4a compares the throughput and latency of multi-clan Sailfish with Sailfish
and single-clan Sailfish, while Figure 4b shows the throughput relative to the
number of input transactions per proposal. Note that we did not evaluate Sail-
fish’s throughput for 1500 transactions per proposal due to its significantly higher
latency at 1000 transactions (as shown in Figure 4a).

As shown in Figure 4b, multi-clan Sailfish achieves higher throughput for the
same number of input transactions due to more efficient bandwidth use compared
to Sailfish and single-clan Sailfish. In multi-clan Sailfish, data dissemination is
limited to each party’s respective clan, whereas in single-clan Sailfish, all parties
disseminate data to a single designated clan. However, multi-clan Sailfish incurs
slightly higher latency at the same input rate because all parties need to process
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blocks, unlike single-clan Sailfish, where parties outside the designated clan only
process the vertex and can send ECHO messages more quickly.

7 Related Work

An extensive body of research has focused on improving the BFT consensus.
DAG-based BFT protocols have emerged as a promising solution to boost through-
put while maintaining low latency. We review the most relevant works below.

Comparison with Arete [47]. Arete [47] also elects multiple sub-committees
for data dissemination and execution while executing the consensus across the
entire tribe. In their protocol, parties disseminate data solely to their respec-
tive clans and collect proof of availability (PoA). This PoA is then input to
Jolteon [21], a traditional leader-based BFT SMR protocol. While this method
reduces bandwidth consumption and enhances throughput and scalability, it in-
troduces additional latency overhead due to the sequential nature of a separate
data dissemination layer. Specifically, PoA generation incurs a latency of 2δ,
while the queuing latency is at least 1δ, and the commit latency for Jolteon
adds up to 5δ, resulting in a minimum total latency of 8δ.

We also identify an issue with the minimum shard size computation in Arete.
They rely on the hypergeometric distribution to compute the size of multiple
sub-committees such that each sub-committee has an honest majority with high
probability. However, the hypergeometric distribution can only be applied to
compute the size of a single committee required to ensure an honest majority.
This is because the initial count of Byzantine parties is required to calculate the
probability of achieving an honest majority within a selected committee. After
the first committee is elected, this information is not available for subsequent
committee selections, making the approach unsuitable for multiple committees.

To provide accurate probabilities, we instead calculate the total number of
possible committees that can be formed and the subset of those committees that
ensure an honest majority. By comparing these counts, we can determine the
probability of multiple selected committees having an honest majority.

Comparison with committee-based consensus protocols. A long line of
research [1,6,13,22] focuses on electing a sub-committee of parties to execute the
consensus protocol. This sub-committee must ensure an honest super majority
to execute the consensus, leading to larger sub-committee sizes unless there are
over 10,000 participants in the system. As a result, these approaches are mainly
advantageous at much larger scales. Furthermore, these protocols typically of-
fer only sub-optimal resilience. In contrast, our method selects a sub-committee
solely for data dissemination and execution tasks, which only require an honest
majority. This allows us to form much smaller committees, even in moderate
system sizes. Meanwhile, the consensus protocol is executed across the entire
tribe, ensuring optimal resilience. Our approach, therefore, offers improved per-
formance even in moderate system sizes.

Due to space constraints, we present additional related work in Appendix A.
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mechanism resembles traditional leader-based BFT. Additionally, the PoA from
data dissemination is used during the consensus phase, introducing extra latency
due to the sequential nature of the process.

Comparison with Gearbox [17].Another noteworthy protocol is Gearbox [17],
which prioritizes safety at the cost of liveness. Gearbox forms smaller committees
that may include a Byzantine super-majority. To commit a value, the protocol re-
quires a higher number of consistent responses from committee members, which
limits its resilience against liveness failures. Furthermore, to detect liveness fail-
ures, Gearbox relies on a separate consensus protocol that maintains both safety
and liveness under f < n/3 Byzantine faults.

Comparison with state-sharded protocols. Several existing works [15, 26,
46] utilize state sharding to partition the ledger into multiple shards, each man-
aged by a dedicated sub-committee executing the full consensus protocol on
the relevant partitioned state. However, these protocols often rely on stronger
assumptions such as synchrony (e.g., Rapidchain [46]) and provide only sub-
optimal resilience [26,46]. Our Multi-clan DAG-based BFT can also be applied in
the state-sharded context, with consensus being executed across the entire tribe,
thereby tolerating optimal Byzantine failures. A common challenge in sharded
blockchains is efficiently handling cross-shard transactions. There is extensive
literature on this topic [15, 26, 46] that could also be relevant to our multi-clan
protocol.

Comparison with Motorway [23] and Star [19]. Both Motorway [23] and
Star [19] include a separate data dissemination layer where data is broadcast to
all parties, and a PoA with f + 1 signatures is collected. This PoA is then used
in a single-proposer BFT SMR protocol for ordering. As previously discussed,
this approach introduces additional latency due to the separate dissemination
layer. Moreover, these protocols do not restrict data dissemination to a smaller
committee, further contributing to the overhead.

Table 1: Ping latencies (in ms) between GCP regions

Destination∗

Source us-e-1 us-w-1 eu-n-1 as-ne-1 au-se-1

us-east1-a 0.75 66.14 114.75 160.28 197.98
us-west1-a 66.15 0.66 158.13 89.56 138.33

europe-north1-a 115.40 158.38 0.69 245.15 295.13
asia-northeast1-a 159.89 90.05 246.01 0.66 105.58

australia-southeast1-a 197.60 139.02 294.36 108.26 0.58
∗Region names are abbreviated versions of the source regions.
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Fig. 5: A round r vertex contains references to at least 2f + 1 round r − 1 vertices,
which are propagated using the RBC primitive. It’s important to note that different
parties may have varying views of the DAG at any given time, but due to the use of
RBC, they will eventually reach consensus on the same view. These protocols rely on
a designated leader to order the vertices. For instance, Sailfish [37] assigns a leader in
each round, as illustrated above.

B Security Analysis of Tribe-assisted RBC

Lemma 1 (Validity). The protocol in Figure 1 satisfies Validity, except with
a negligible error probability.

Proof. Observe that an honest sender Pk sends ⟨VAL,m, r⟩ to all parties in
Pc and ⟨VAL, H(m), r⟩ to all parties in P \ Pc. Consequently, all honest par-
ties will eventually send ⟨ECHO, H(m), r⟩. As a result, all honest parties will
receive at least 2f + 1 distinct ⟨ECHO, H(m), r⟩ messages, including at least
fc + 1 from the parties in Pc. Consequently, all honest parties will eventually
send ⟨READY, H(m), r⟩ to all parties, and all honest parties will receive 2f + 1
⟨READY, H(m), r⟩ messages. Furthermore, honest parties in Pc will receive m
from the sender Pk. Therefore, all honest parties will invoke r deliver(y, r, Pk),
where y = m if Pi ∈ Pc and y = H(m) if Pi ̸∈ Pc.

Note that honest parties may fail to receive at least fc + 1 ⟨ECHO, H(m), r⟩
messages only in the rare case where the clan has a dishonest majority, which
occurs with negligible probability. Therefore, the validity property is maintained
except with a negligible probability of failure.

Lemma 2. No two honest parties will send READY message on conflicting val-
ues.

Proof. Suppose an honest party Pi sends READY message for value m. This
implies Pi must have received at least 2f+1 ⟨ECHO, H(m), r⟩. A simple quorum
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intersection argument show that there cannot exist a set of at least 2f + 1
ECHO messages on a conflicting value m′. Thus, no honest party sends a READY
message for a conflicting message.

Lemma 3 (Agreement). The protocol in Figure 1 satisfies Agreement, except
with a negligible error probability.

Proof. Suppose an honest party Pi outputs r deliveri(y, r, Pk) (where y = m
when Pi ∈ Pc and y = H(m) when Pi ̸∈ Pc). This implies Pi must have
received at least 2f + 1 ⟨READY, H(m), r⟩ messages, including at least f + 1
⟨READY, H(m), r⟩ from honest parties. Since honest parties send ⟨READY, H(m), r⟩
to all parties, all honest parties will eventually receive at least f+1 ⟨READY, H(m), r⟩.
By Lemma 2, no honest party sends READY message for a conflicting value.
Thus, honest parties that have not sent READY message will eventually send
⟨READY, H(m), r⟩. Consequently, all honest parties will eventually receive 2f+1
⟨READY, H(m), r⟩ and honest parties in P\Pc will invoke r deliver(H(m), r, Pk).

Moreover, observe that at least one honest party must have sent ⟨READY, H(m), r⟩
upon receiving 2f + 1 ⟨ECHO, H(m), r⟩ messages, including at least fc + 1
⟨READY, H(m), r⟩ messages from parties in Pc. This implies at least one honest
party Pj ∈ Pc must have received the value m, except with negligible error prob-
ability. Consequently, other honest parties in Pc will download value m from Pj

and invoke r deliver(m, r, Pk), except with negligible error probability.

Theorem 1. The protocol in Figure 1 is a tribe-assisted reliable broadcast tol-
erating t < n/3 Byzantine faults satisfying Definition 2, except for a negligible
probability of error.

Proof. The integrity property is straightforward from the protocol, as a party
can deliver a value at most once. The validity and agreement property follows
from Lemma 1 and Lemma 3 respectively.

C Round Optimal Tribe-assisted Reliable Broadcast

In this section, we present a tribe-assisted RBC protocol that completes in two
rounds in the good-case which is optimal [2]. This construction is based on the
round-optimal RBC of Abraham et al [2]. The protocol is presented in Figure 6.

Protocol details. All the messages exchanged in this protocol are signed. The
sender Pk with input value m sends ⟨VAL,m, r⟩k to each party Pi ∈ Pc for some
round r, while it sends only the digest (i.e.,H(m)) to the parties outside the clan.
Upon receiving the value m, each party Pi ∈ Pc multicasts ⟨ECHO, H(m), r⟩i.
Parties outside the clan send ⟨ECHO, H(m), r⟩ upon receiving just the digest.

Upon receiving 2f + 1 ⟨ECHO, H(m), r⟩ messages with at least fc + 1 of
those coming from parties in Pc (denoted by ECr(m), an honest party Pi ∈ Pc

multicasts the ECr(m). Pi can deliver m if it has already received the value m.
If it hasn’t yet received the value, it can download m from other parties in Pc

and then deliver it. Finally, parties outside the clan deliver H(m) upon receiving
ECr(m).
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r bcastk(m, r)
1. The sender Pk sends ⟨VAL,m, r⟩k to each party Pi ∈ Pc and ⟨VAL, H(m), r⟩k to

party Pi ̸∈ Pc.
2. Upon receiving the first ⟨VAL, y, r⟩k, party Pi sends ⟨ECHO, H(m), r⟩i to all

parties (where y = m when Pi ∈ Pc and y = H(m) when Pi ̸∈ Pc).
3. Upon receiving 2f + 1 distinct ⟨ECHO, H(m), r⟩∗ messages with at least fc + 1

⟨ECHO, H(m), r⟩∗ messages from Pc (denoted by ECr(m)), party Pi multicasts
ECr(m) and performs the following:
– If party Pi ∈ Pc and has received value m, invoke r deliveri(m, r, k); other-

wise download value m from parties in Pc and invoke r deliveri(m, r, k).
– If party Pi ̸∈ Pc, invoke r deliveri(H(m), r, k).

Fig. 6: Tribe-assisted Byzantine reliable broadcast based on [2].

Communication complexity. Let ℓ represent the size of the value m. An
honest sender transmits the ℓ-bit message to parties in Pc and a κ-bit digest to
parties in P \Pc, resulting in a communication complexity of O(ncℓ+κ(n−nc)).
The all-to-all multicast of ECHO messages incurs a complexity of O(κn2). When
using the BLS multi-signature scheme, the size of ECr(m) becomes O(κ+n), and
the all-to-all multicast of the ECr(m) incurs O(κn2 +n3). Therefore, the overall
communication complexity is O(ncℓ+κn2+n3) in the good-case. While there is
a cubic term in the communication complexity, the linear term associated with
the BLS multi-signature is merely a bit vector indicating who voted, so it does
not impose significant communication overhead.

In the worst case, if the sender is Byzantine, the communication complexity
can increase to O(n2

cℓ + κn2 + n3) when the honest parties request the value
from a linear number of parties.

C.1 Security Analysis

Lemma 4 (Validity). The protocol in Figure 6 satisfies Validity, except with
a negligible error probability.

Proof. Observe that an honest sender Pk sends ⟨VAL,m, r⟩ to all parties in Pc

and ⟨VAL, H(m), r⟩ to all parties in P \Pc. Consequently, all honest parties will
eventually send ⟨ECHO, H(m), r⟩. As a result, all honest parties will eventually
receive at least 2f + 1 distinct ⟨ECHO, H(m), r⟩ messages, including at least
fc + 1 from the parties in Pc. Furthermore, honest parties in Pc will receive m
from the sender Pk. Therefore, all honest parties will invoke r deliver(y, r, Pk),
where y = m if Pi ∈ Pc and y = H(m) if Pi ̸∈ Pc.

Note that honest parties may fail to receive at least fc + 1 ⟨ECHO, H(m), r⟩
messages only in the rare case where the clan has a dishonest majority, which
occurs with negligible probability. Therefore, the validity property is maintained
except with a negligible probability of failure.

Lemma 5 (Agreement). The protocol in Figure 6 satisfies Agreement, except
with a negligible error probability.
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Proof. Suppose an honest party Pi outputs r deliveri(y, r, Pk) (where y = m
when Pi ∈ Pc and y = H(m) when Pi ̸∈ Pc). This implies Pi must have re-
ceived 2f + 1 ⟨ECHO, H(m), r⟩ messages, including at least fc + 1 from the
parties in Pc. Pi must have sent ECr(m) to all parties. Consequently, all honest
parties will eventually receive ECr(m) and honest parties in P \ Pc will invoke
r deliver(H(m), r, Pk).

Moreover, observe that at least one honest party Pj ∈ Pc must have received
the value m, except with negligible error probability. Consequently, other honest
parties in Pc will download valuem from Pj and invoke r deliver(m, r, Pk), except
with negligible error probability.

Theorem 2. The protocol in Figure 6 is a tribe-assisted reliable broadcast sat-
isfying Definition 2, except for a negligible probability of error.

Proof. The integrity property is straightforward from the protocol, as a party
can deliver a value at most once. The validity and agreement property follows
from Lemma 4 and Lemma 5 respectively.

D Extended Analysis

D.1 Probability Analysis for Single-clan DAG-based BFT

When a single clan of nc parties is randomly selected from a system of n total
parties, of which f are Byzantine, the probability of forming a dishonest majority
within the clan is given by the hypergeometric cumulative distribution function
(CDF). This function calculates the likelihood of selecting more than half of the
nc parties as Byzantine. Specifically, the probability Pr(dishonest majority) is:

Pr(dishonest majority) =

nc∑
k=⌈nc

2 ⌉

(
f
k

)(
n−f
nc−k

)(
n
nc

) (1)

The value of nc must be chosen sufficiently large relative to the total number
of parties n and the number of Byzantine parties f so that the probability
of forming a dishonest majority within the clan is below the desired security
threshold µ. Specifically, we require:

Pr(dishonest majority) ≤ 2−µ (2)

In Figure 7, we present the required clan size nc necessary to ensure that the
probability of forming a dishonest majority is below 10−9 ≈ 2−30.

D.2 Probability Analysis for Multi-clan DAG-based BFT

In this section, we calculate the probability of forming a clan with a dishonest
majority when the number of clans is 2 and 3. This analysis can be generalized
to compute the error probability for a larger number of clans using the same
principles.
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Fig. 7: Clan sizes required to ensure an honest majority with failure probability below
10−9.

Analysis for 2 clans. Let f = ⌊n−1
3 ⌋ represent the maximum number of Byzan-

tine parties, and let nh = n− f denote the number of honest parties. When the
tribe is divided into 2 clans, the total number of possible combinations to form
two clans is given by:

N =

(
n

nc

)
(3)

Let w1 and w2 represent the number of Byzantine parties in clans C1 and C2,
respectively. To ensure an honest majority in both clans, the number of Byzan-
tine parties in each clan must be between 0 and fc, where fc is the maximum
number of Byzantine parties that a clan can tolerate and still maintain an hon-
est majority, i.e., 0 ≤ w1, w2 ≤ fc. Given that there are f Byzantine parties in
total, they must be split between C1 and C2, meaning that w1 +w2 = f . Let W
represent all possible pairs (w1, w2) such that 0 ≤ w1, w2 ≤ fc and w1+w2 = f .
The total number of valid combinations where both clans maintain an honest
majority is then given by:

s =
∑

(w1,w2)∈W

(
f

w1

)(
nh

nc − w1

)
(4)

Accordingly, the probability of forming a clan with dishonest majority is
given by:

Pr(dishonest majority) = 1− s

N
(5)

Analysis for 3 clans. When the entire tribe is divided into 3 clans, the total
number of possible combinations to form three clans is given by:

N =

(
n

nc

)(
n− nc

nc

)
(6)

Let w1, w2 and w3 represent the number of Byzantine parties in clans C1, C2
and C3 respectively. To ensure an honest majority in both clans, the number of
Byzantine parties in each clan must be between 0 and fc, i.e., 0 ≤ w1, w2, w3 ≤
fc. Given that there are f Byzantine parties in total, they must be split between
C1, C2 and C3, meaning that w1 + w2 + w3 = f . Let W represent all possible
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pairs (w1, w2, w3) such that 0 ≤ w1, w2, w3 ≤ fc and w1 + w2 + w3 = f . The
total number of valid combinations where all clans maintain an honest majority
is then given by:

s =
∑

(w1,w2,w3)∈W

(
f

w1

)(
nh

nc − w1

)(
f − w1

w2

)(
nh − (nc − w1)

nc − w2

)
(7)

We obtain the probability of forming a clan with dishonest majority by substi-
tuting the value of N (from Equation (6)) and s (from Equation (7)) into Equa-
tion (5).

The value of nc must be chosen sufficiently large relative to the total number
of parties n and the number of Byzantine parties f so that the probability
of forming a dishonest majority within the clan is below the desired security
threshold µ. Specifically, we require:

Pr(dishonest majority) ≤ 2−µ (8)

Concrete numbers. Based on the above analysis, when the network size is
150, we can partition the network into two clans, with the probability of forming
a clan with a dishonest majority being approximately 4.015 ∗ 10−6. Similarly,
when the network size is 387, we can divide the network into three clans, with
the probability of forming a clan with a dishonest majority being approximately
1.11 ∗ 10−6.
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