
KeyClub and RandRec: Two New Social Key

Recovery Schemes

Supra Research Team

September 27, 2024

Abstract

We describe two new social recovery schemes using similar approaches
but in different settings. Our first setting considers a community of key
holders, the members of which can be thought of as crypto-natives. In
this setting, we design a social recovery scheme – which we call KeyClub
– in that a key owner uses (a subset of) other community members as
guardians, who do not need to store any new information apart from their
own pre-generated secret key (possibly used for signing transactions etc.).
Additionally they may use passwords (which is not stored anywhere) to
enhance security. Our second setting considers the guardians to be any
Web2 user, who may not have a secret storage capacity, and relies solely
on passwords. However, given access to a VRF service (that holds a secret
VRF key) they can still support a back-up and recovery procedures similar
to the earlier scheme – we call this scheme RandRec. Both our schemes
rely on a core primitive, which we define as bottom-up secret sharing
(BUSS), that enables an arbitrary (t+ 1)-out-of-n secret sharing for any
given shares through additional public information, which is necessary
during reconstruction and is possibly stored reliably on a blockchain.

1 Introduction

Cryptography plays a crucial role in securing and authenticating data in the
digital space by providing mathematically proven guarantees. However, vir-
tually all such guarantees crucially rely on keeping the underlying secret key
secure and available, both at the same time. In the blockchain space, due to
its fundamental reliance of cryptography, creating secure and reliable (that is
available when needed) wallet services, for storing keys, has garnered substantial
attention [7, 9] in the past few years.

Storing secret keys in wallets securely and reliably turns out to be remarkably
challenging. Among many a primary challenge is, unlike passwords, keys can
not be reset easily. For example, if certain funds are “locked” with respect to
a particular public-key, such that one needs to produce a signature using the
corresponding secret-key, then those funds are lost forever if the key cannot be

1

recovered. It is estimated that USD 140 billions worth of BTC is unrecoverable
due to lost secret keys [11]! Therefore, many existing wallets support a backup
option, either via mnemonic pass phrases [2], which one may write down in
a secure place, or splitting the key [1, 3] using simple secret sharing (such as
Shamir’s[10]) and storing the shares in different devices – each share must be
secured with another authentication mechanism, such as passwords. But even
for those solutions (also called cold [8] or hardware wallets) incidental memory
erasure or losing passwords (or a combination)1 may happen realistically invok-
ing a loss of fund. In fact, in scenarios involving permanent disappearance, such
as death or disability of the key-owner, similar loss of fund can take place.

Many of these issues are mitigated in social recovery solutions, which, as layed
out by Vitalik Butterin [5], carry substantial benefits in terms of usability and
reliability without compromising security. In a social recovery scheme, a key-
owner uses parties from her social circle, also known as guardians, for backing
up her secret key. A typical recovery access structure can be (t + 1)-out-of-n
threshold, where n guardians are used for backup and any (t + 1) of them are
required to recover the key. This setting will be secure as long as at most t of
the shares are captured, by collusion or otherwise. To reduce the possibility of
collusion, we would require the guardians not to know each other’s identities.
Importantly, for the event of permanent disappearance of the key-owner, the
legitimate nominee can coordinate with any (t + 1) guardians to recover the
secret-key and thus inherit any asset locked with the key.

Using a simple (t + 1)-out-n secret sharing for social recovery, however, incurs
new issues, as we elaborate next: let ski is party Pi’s secret key, which is a
256 bit string. A secret sharing of ski would generate n shares σi,1, σi,2, . . . σi,n,
where σi,j belongs to guardian Pj – each σi,j is also a 256 bit string. Not only
it is hard to securely and reliably store the shares (that basically requires the
same procedure used to store keys), it scales poorly – if a party Pj acts as a
guardian for many parties – for each key-owner Pk, the guardian Pj needs to
store a separate share σk,j .

We mitigate this by using a technique, that we call bottom-up secret sharing
(BUSS), which allows arbitrary (t + 1)-out-of-n secret sharing even for any
given shares, as long as they are randomly distributed (otherwise guessing the
key becomes easier).2 So, the problem now boils down to constructing random
shares with as minimal information as possible.

KeyClub In our first setting we consider a community of key-holders, each of
whom is a crypto-native or crypto-enthusiast and holds a secret/signing key, pos-
sibly used for signing transactions. There is a corresponding public/wallet key,

1In [5], a real world example was given for a Bitcoin developer Stefan Thomas, who had
three backups entities – an encrypted USB stick, a Dropbox account and a Virtualbox virtual
machine. However, he accidentally erased two of them and forgot the password of the third,
forever losing access to 7,000 BTC (worth $125, 000 at the time).

2Note that, as long as the shares come from high entropy distribution, the scheme works.
For simplicity, in this document, we stick to random shares.

2

given which the secret key is unpredictable. In this setting we design a simple
social key recovery scheme: each key owner’s key can be backed up with (a sub-
set) of the rest of the community members. For recovery, any (t+ 1) guardians
must help correctly. The scheme supports every party to back up their respec-
tive keys with everyone else, without needing to store anything apart from their
own secret key – this establishes an ecosystem of mutual dependence without
additional overhead. This satisfies stronger security requirements against any
malicious and adaptive corruption up to t parties. Even if all guardian’s secrets
are leaked, passwords can be used to ensure that the attacker still needs to ex-
ecute an offline attack. We also emphasize that, both our backup and recovery
protocols require only a single round trip interaction in a star network, with
the key owner in the center, and guardians sending a single message, without
requiring any synchronization among themselves – in fact the guardians do not
require to know each other.

RandRec In the second setting the guardians are not assumed to be crypto-
natives, and solely rely on passwords. In this case, we additionally rely on a
VRF service, holding a VRF secret key. In particular, each guardian now inter-
acts with the VRF service to derive a share – the pseudorandomness of which
is guaranteed by the VRF property. Like above, the same security guarantees
can be achieved against any malicious and adaptive corruption up to t parties.
Additionally, even if the VRF server is malicious, it won’t get any information
about the guardian’s passwords – this is ensured by using an input-oblivious
VRF computation. Similar to above, also in this scheme the backup and re-
covery protocols communicate with the key-owner in a star-network fashion.
Additionally, one more interaction is needed with the VRF server to derive the
shares. Still, the guardians require no synchronization among themselves, and
neither do they need to know each other’s identities.

We emphasize that, though we describe separately, these two approaches maybe
combined together. In particular, it is possible that some guardians are crypto-
native and use their wallets while others are not crypto-native and rely instead
on the VRF service.

2 Notation and Preliminaries

Notations We use N to denote a set of positive integers, and [n] to denote the
set {1, . . . , n} for any n ∈ N. We denote the security parameter by λ ∈ N. A set
X = {x1, . . . , xn} is denoted as x[n] or {xi}i∈[n]. For any subset S ⊂ [n], xS or
{xi}i∈S denotes the subset of X containing all xi’s such that i ∈ S. A ordered
tuple (x1, . . . , xn) is denoted by vector notation x⃗[n] or (xi)i∈[n]. Similarly for
any subset S of [n], x⃗S and (xi)i∈S are defined.

Every algorithm takes security parameter λ as an input, even if not always
mentioned explicitly; all definitions work for a sufficiently large choice of λ.
A typical value for λ is 256. We use y := D(x) to denote a deterministic

3

computation and y := x for assignment. Randomized computations are denoted
as y ← R(x). The symbol ⊥ denotes an undefined value, or invalidity.

Communication Model We assume that parties are connected by pairwise
secure and authenticated channels, such as TLS. Furthermore, everyone has
access to an immutable public bulletin board, where data can be stored reliably,
so that they are available when needed. For example, we may assume that such
bulletin board is realized by a smart-contract over a blockchain.

Threat Model We consider a threat model, where an attacker can corrupt
upto t parties in the system, arbitrarily. Our protocols do not have an iden-
tifiable abort feature, where in case of abort, a corrupt party could have been
identified. For the VRF based protocol, in addition to the standard corruption,
the VRF service can be totally untrusted – each response from VRF can be veri-
fied, and due to input-obliviousness it does not know anything about guardian’s
input, that contain passwords. Furthermore, using passwords would partially
protect the key in the worst case scenario, in that all guardian’s secrets are
compromised, forcing the attacker to brute force the passwords using off-line
dictionary attack.

3 Syntax and Semantics

In this section we present the basic syntax of a social recovery scheme. Also we
provide brief discussions about the semantics of security and correctness without
presenting formal definitions.

We note that the social recovery schemes we consider here do not require the
guardians to remember / store any additional information apart from their a
priori secret state (possibly their own signing key), and a password. It suffices
for the back-up procedure to produce only public back-up information pub, to
be stored on the blockchain / public bulletin board reliably. Also for the basic
schemes we assume that, for a secret key, the shares are fixed, such that if the
same key is shared multiple times, the same shares (both private and public)
would be generated – this means we may just consider the back protocol to be
executed once. Later in Section 7 we discuss how to enable sharing of the same
keys multiple times with different shares.

Syntax Consider that each Pi has an identity, denoted by integer i. For
party Pi, there maybe a key-generation algorithm KeyGeni, which produces
a pair of keys (ski, pki) ← KeyGeni(1

λ), pki is published, and posted on the
blockchain / bulletin board. An access structure contains all pairs of sets (B,R)
and indicates whether parties in set R is allowed to recover the key that was
backed up by parties in set B. We only consider a (t + 1)-threshold access
structure, which consists of all pairs (B,R) such that |R| = (t + 1) and R ⊆
B ⊂ [N]. In this setting, a social recovery scheme ΠSKR consists of a pair of

4

protocols (ΠBack,ΠRec) executed in the following order: each party may initiate
an instance of ΠBack once with a set of guardians B; finally once Pi has finished
executing ΠBack, it can initiate ΠRec arbitrarily many times with any subset
R ⊆ B. The protocols have the following syntax:

• ΠBack: In this protocol, a key owner Pi who wishes to back up her secret
key ski interacts with a set of guardians {Pj}j∈B . Each guardian Pj

interact with the owner, but doesn’t interact with each other. The protocol
concludes with a public back-up string pubi, published on the blockchain.

• ΠRec: If Pi wishes to recover ski using a recovery set R ⊆ B, she runs this
protocol without any secret input with a set of guardians {Pj}j∈R. In this
procedure pubi may be used by all parties. At the end of this protocol,
the key-owner may receive a private input ski (or ⊥ if unsuccessful).

Now we discuss the structural correctness and security requirements.

Structural Requirements We require that:

• The protocols ΠBack and ΠRec are both star-network protocol, in that
the owner is at the center of the star, and the guardians don’t interact
among themselves. It maybe possible that they interact with other ex-
ternal entities, for example, in RandRec the guardians interact with the
VRF server(s).

• The guardians do not even need to know the identity of the other guardians.
Only the key-owner knows the set B, and needs to remember this for re-
covery. This would reduce the possibility of collusion as discussed by
Vitalik [5].

Correctness For correctness of the scheme we need that for any i ∈ [N], any
pair of back-up and recovery sets (B,R) that is within the access structure (for
threshold we require |R = (t+1)|), then for any owner Pi, who backs up a secret
key ski generated as (ski, pki) ← KeyGeni(1

λ) using B by running ΠBack and
recovers by executing ΠRec with R, then the recovery procedure would yield ski.

Security There are several security requirements, that hold under a tolerable
corruption (depends on the specifics of the scheme):

• Owner’s Key Safety. The primary requirement is that, any secret key ski
of a key-owner Pi must be totally hidden during the protocol executions.

• Guardian’s Secret Safety. A guardian’s secrets must be totally hidden
during the protocol.

• Worst Case Offline Attack. In the worst-case, when all guardian’s secrets
are leaked to the attacker, still the attacker needs to run off-line dictionary
attack to recover a secret.

5

• Correct Recovery. A recovery session either outputs the correct key, or ⊥,
but never a different key.

4 Bottom-Up Secret Sharing (BUSS)

Consider a set of parties P1, P2, . . ., where each party Pi has an established
identity denoted simply by integer i. We formalize a secret-sharing scheme
for a (t+ 1)-out-of-n access structure, (first used in [4] to construct multiverse
threshold signatures, albeit without any formalization), that allows each party
to choose their shares independently of the other parties’ shares and even the
secret.

Syntax For n, t ∈ N such that t+ 1 < n, a bottom up secret sharing scheme
for a (t+ 1)-out-of-n threshold access structure consists of algorithms with the
following syntax:

• Share(s, σ⃗B , B). The share algorithm takes a secret and (n − 1) shares,
the corresponding set of indexes B (i /∈ B and |B| = n− 1) to generate a
public value φ.

• Recon(φ, σ⃗R, R). The reconstruction algorithm takes t+ 1 shares σ⃗R, the
corresponding set of indexes R, and the public value φ to reconstruct a
secret s (or outputs ⊥ if the procedure fails).

Requirements The correctness requirement is straightforward, that is if for
any secret s, any sets R,B such that R ⊆ B and |B| = (n − 1), |R| = (t +
1), any σ⃗B we have φ ← Share(s, σ⃗B , B), then the following holds: s ←
Recon(φ, σ⃗R, R)).

For security we require that, even if the attacker controls upto t shares (and
may choose them too), the public information is statistically independent of the
input s, that is, it does not leak any information about the secret.

4.1 Constructing BUSS

We construct a BUSS scheme for a (t + 1)-out-of-n threshold access structure
over a finite field F (e.g. {0, 1}256) as follows:

• Share(s, σ⃗B , B):
– Define a polynomial f over F of degree (n−1) such that f(0) := s

and for all j ∈ B: f(j) := σj . Then output:

φ :=
(
f(−1), . . . , f

(
− (n− t− 1)

))
• Recon(φ, σ⃗R, R):

– Parse φ as
(
f(−1), . . . , f

(
− (n− t− 1)

))
. Combine these (n−

6

t − 1) points with (t + 1) points {f(j) := σj}j∈R (|R| = t + 1)
using Lagrange interpolation to output s := f(0).

Satisfying Requirements The correctness follows from the Lagrange inter-
polation. The security can be argued by observing that at no point the attacker
gets more than (n− 1) points of the polynomial, as long as it controls at most
t shares, and observes the public output (which contains (n− t− 1) additional
points). Hence, the polynomial would be totally hidden unconditionally.

5 KeyClub: Social Recovery in a Community of
Key holder

Setting In this community setting we assume that each party Pi holds a key
ski generated by executing a key-generation algorithm (ski, pki)← KeyGeni(1

λ),
where λ is a security parameter. The public keys are published on the bulletin
board / blockchain in the beginning and also fix a threshold t (as a parameter)
– every party Pi uses any set B of size ≥ (t + 1) as guardians to back up key.
Recovery is possible by collaborating with any subset R ⊆ B of size (t + 1).
Security holds even if (up to) any t of them are arbitrarily corrupt and even are
colluding.

Bulletin Board

(pk1, pk2, pk3, pk4)

P1 (sk1) P2 (sk2, pw2)

P3 (sk3, pw3) P4 (sk4, pw4)

1. REQ

1. REQ
1. REQ

2. σ1,2

2. σ1,3
2. σ

1,4

3.
φ1

(a) Party P1’s key backup with P2,
P3, and P4

Bulletin Board

(pk1, pk2, pk3, pk4)

P1 P2 (sk2, pw2)

P3 (sk3, pw3)

1. REQ

1. REQ

2. σ1,2

2. σ1,3

φ1

4. Recon(pk1, φ1, σ1,2, σ1,3)→ sk1/⊥

(b) Party P1’s key recovery with P2

and P3

Figure 1: Workflow of KeyClub (n = 4, t = 1) where B = {2, 3, 4} and R =
{2, 3}. We denote the shares as {σ1,j}j∈{2,3,4} and the public point as φ1.
Algorithm Recon reconstructs the secret sk1 using the public point φ1 and shares
(σ1,2, σ1,3) and matches it with pk1.

Key Generation All KeyGen algorithms that generate a key-pair (sk, pk) such
that sk ∈ F and pk ∈ G for a cyclic group G with order |F|. KeyGen has the
following requirements.

7

1. We assume that for every pk there exists a unique sk such that (pk, sk) is
a valid output of KeyGen.

2. One can efficiently verify whether a given (pk, sk) is a valid output of
KeyGen.

3. It is computationally hard to guess sk given pk.

For example, one may consider keys of the form (pk = gsk) for a cyclic group
generated by g where discrete log is hard – this is used widely in many schemes,
including BLS signatures, Schnorr signatures, El-Gamal encryptions etc. It
is easy to check that this type of key generation does satisfy all of the above
requirements.

We describe our main construction ΠKC or the KeyClub to socially recover keys
in a community of key-holders for a threshold access structure. We use a hash
function H : {0, 1}∗ → F. The construction is provided below:

The Protocol KeyClub (ΠKC)

– ΠBack: A party Pi runs this protocol as a key-owner with a set of ≥ (t+1)
guardians {Pj}j∈B as follows:

• On request from Pi each guardian Pj computes σi,j := H(pki, skj , pwj)
and sends that to Pi.

• The key-owner, on receiving (σi,j)j∈B , define s := ski and compute
φ← Share(s, (σi,j)j∈B , B) and publish pub := φ.

– ΠRec: A party Pi runs this protocol as a key-owner with a set of (t + 1)
guardians {Pj}j∈R as follows:

• On request from the key-owner Pi each guardian Pj re-computes
σi,j := H(pki, skj , pwj) and sends that to Pi.

• The key-owner, on receiving (σi,j)j∈R, retrieves φ := pub and com-
putes s← Recon(φ, (σi,j)j∈R, R).

• Then Pi checks whether (si, pki) is a valid key-pair. If yes then pri-
vately output ski := si, else output ⊥.

How the requirements are satisfied? The structural and correctness re-
quirements are easy to see. The security requirements are satisfied as long as
at most t parties are arbitrarily corrupt (and possibly colluding) because:

• Owner’s key safety follows from the security of secret sharing. To formally
prove this, one needs to assume that the hash function used behaves like
a programmable random oracle plus rely on the fact that given the public
key, it is computationally hard to obtain the corresponding secret key.

8

• Guardian’s secret safety follows as long as the hash function is assumed to
be a random oracle, because the output of hash then reveals no information
on the input, as long as the input is unpredictable. The input contains
guardian’s secret key which is unpredictable given the public key. This
also holds as long as the owner and t− 1 other guardians are corrupt.

• Worst-case offline attack follows because, even if all guardian secrets are
leaked, since passwords are never stored anywhere, the attacker is forced
to guess the passwords correctly to compute the shares using dictionary
attacks.

• Correct Recovery is ensued because in the end the key-owner checks the
correctness of the recovered key with respect to the public key at the end
of the recovery protocol.

6 RandRec: Socially Recovering Keys using VRF
services

In this section we put forward another SKR scheme which works among parties
P1, P2 . . . and a VRF server Pvrf who holds a secret key kvrf (plus possibly a pub-
lic verification key vkvrf for verification). Here, we assume a key owner, Pi who
generates a key-pair (ski, pki) ← KeyGeni(1

λ) which satisfies the Key genera-
tion criteria mentioned in the previous section. Pi publishes pki. However, here
we assume a set of guardians who don’t have any secret key themselves, such
as Web2 users who are, for example, not native to the crypto ecosystem. We
assume that the guardians just remember a password, but never store it. How-
ever, since the passwords are relatively easier to guess (that is they come from
low entropy distribution), our BUSS scheme can not be used directly, because,
by definition, our BUSS scheme requires the secret to be random (or to come
from a high entropy distribution). Therefore, we assume a VRF server which is
used by each guardian to derive a corresponding high (computationally) entropy
shares. The rest of the protocol is pretty much the same as ΠKC. We call this
protocol ΠRR or RandRec, which is described below. In the description, along
with H : {0, 1}∗ → F, we consider another hash function H′ : {0, 1}∗ → G.

Protocol RandRec (ΠRR)

– ΠBack : Party Pi runs this protocol as a key-owner with a set of ≥ (t+ 1)
guardians {Pj}j∈B as follows:

• On request from Pi each guardian Pj :

– Sample a random ρ
$← F

– Computes µj := H′(pwj)
ρ and send to Pvrf using secure channel.

9

– Pvrf responds with zj := µkvrf
j .

– Pj , on receiving zj verifies the correctness with respect to vkvrf .

It aborts if the check fails. Otherwise, it computes skj := z
1/ρ
j .

– Pj then computes σi,j := H(pki, skj , pwj) and sends that to Pi.

• The key-owner, Pi, on receiving (σi,j)j∈B , define s := ski and com-
pute φ← Share(s, (σi,j)j∈B , B) and publish pub := φ.

– ΠRec: A party Pi runs this protocol as a key-owner with a set of (t + 1)
guardians {Pj}j∈R as follows:

• On request from Pi each guardian Pj re-computes σi,j as:

– Sample a random ρ
$← F

– Computes µj := H′(pwj)
ρ and send to Pvrf using secure channel.

– Pvrf responds with zj := µkvrf
j .

– Pj , on receiving zj verifies the correctness with respect to vkvrf .

It aborts if the check fails. Otherwise, it computes skj := z
1/ρ
j .

– Pj then computes σi,j := H(pki, skj , pwj) and sends that to Pi.

• The key-owner, on receiving (σi,j)j∈R, retrieves φ := pub and com-
putes s← Recon(φ, (σi,j)j∈R, R).

• Then Pi checks whether (si, pki) is a valid key-pair. If yes then pri-
vately output ski := si, else output ⊥.

How the requirements are satisfied? The structural and correctness re-
quirements are easy to see. For security requirements observe that:

• Owner’s key safety can be seen exactly the same way as ΠKC.

• Guardian’s Secret safety follows from two things: (i) due to the blinding
factor ρ, the VRF computation is input-oblivious [6] and hence even if the
VRF server is corrupt, it does not know anything on a guardian’s secret,
such as passwords; (ii) similar to ΠKC, if the hash function H is assumed
to be a random oracle, the output of hash then reveals no information on
the input, as long as the input is unpredictable, which is guaranteed by
the unpredictability of the VRF output. This also holds as long as the
owner and t− 1 other guardians are corrupt.

• Worst-case offline attack follows, since passwords are never stored any-
where; so the attacker must guess the passwords correctly to compute the
shares using dictionary attacks even if all guardian’s secrets are leaked.
This also holds when the VRF server is corrupt.

• Correct Recovery is ensured as the key-owner checks the correctness of the
recovered key with respect to the public key at the end of the recovery pro-

10

Bulletin Board

P1 (sk1)

P2(pw2)P3(pw3) P4(pw4)

1.
RE

Q 1. REQ

1. REQ
4.σ

1,24.σ1,3

4.σ1,4

5.φ1

(pk1, pk2, pk3, pk4, vkvrf)

Pvrf (kvrf)

2.µ2
2.µ

3

2.µ43.z4
3.z

3
3.z2

(a) Party P1’s key backup with P2, P3, and P4

Bulletin Board

P1

P2(pw2)P3(pw3)

1.
RE

Q 1. REQ

4.σ
1,24.σ1,3

5.φ1

(pk1, pk2, pk3, pk4, vkvrf)

Pvrf (kvrf)

2.µ2
2.µ

3

3.z
3

3.z2

φ1

6. Recon(pk1, φ1, σ1,2, σ1,3)→ sk1/⊥

(b) Party P1’s key recovery with P2 and P3

Figure 2: Workflow of RandRec (n = 4, t = 1) where B = {2, 3, 4} and R =
{2, 3}. Here, {µj}j∈{2,3,4} and {zj}j∈{2,3,4} denote the input and output of
the VRF. We denote the guardian passwords as {pwj}j∈{2,3,4}, the shares as
{σ1,j}j∈{2,3,4}, and the public point as φ1. Algorithm Recon reconstructs the
secret sk1 using the public point φ1 and shares (σ1,2, σ1,3) and matches it with
pk1.

tocol. Furthermore, the verifiability of the VRF output would ensure that
its response is verified immediately after receiving. This gives additional
robustness against a corrupt VRF server.

Distributed VRF Our description considers a single VRF server. However,
it is readily compatible with a distributed VRF (dVRF) service with many
servers as well. In fact, a dVRF service would be more robust, because VRF
computation is essential both during backup and recovery procedures.

7 Rotating Shares for the Same Key

In our basic schemes, we assume that the shares σi,j are deterministic for a
specific key. This is because, once the owner’s key ski is fixed, the share σi,j

11

for guardian with identity-j is derived deterministically by hashing a number of
components all of which are fixed. Therefore, backing up each secret multiple
times would yield the same share for the same guardian, irrespective of the
backup set. Realistically, it may be desirable to have support for share rotation
– which means even if the same secret key ski is shared multiple times, different
shares σi,j,t1 and σi,j,t2 should be generated for guardian-j. A simple way to
enable that would be to include a counter t, which is maintained by the key
owner. Then use t additionally to derive σi,j,t := H(pki, skj , pwj , t). However,
this would burden the key owner who now needs to store the counter. This can
be dispensed with in a synchronized setting, in that everyone has access to a
clock, and t is just the current time stamp.

References

[1] Cypherock – The world’s first hardware wallet without a seed phrase
backup. https://docs.cypherock.com/.

[2] Dash: A Privacy Centric Crypto Currency. https://www.exodus.com/

assets/docs/dash-whitepaper.pdf.

[3] MetaMask Developer Documentation. https://docs.metamask.io/.

[4] Leemon Baird, Sanjam Garg, Abhishek Jain, Pratyay Mukherjee, Rohit
Sinha, Mingyuan Wang, and Yinuo Zhang. Threshold signatures in the
multiverse. Cryptology ePrint Archive, Paper 2023/063, 2023. https:

//eprint.iacr.org/2023/063.

[5] Vitalik Buterin. Why we need wide adoption of social recovery wallets,
2021. https://vitalik.eth.limo/general/2021/01/11/recovery.html.

[6] Śılvia Casacuberta, Julia Hesse, and Anja Lehmann. SoK: Oblivious pseu-
dorandom functions. Cryptology ePrint Archive, Report 2022/302, 2022.

[7] Panagiotis Chatzigiannis, Konstantinos Chalkias, Aniket Kate,
Easwar Vivek Mangipudi, Mohsen Minaei, and Mainack Mondal.
Sok: Web3 recovery mechanisms. IACR Cryptol. ePrint Arch., page 1575,
2023.

[8] Poulami Das, Sebastian Faust, and Julian Loss. A formal treatment of
deterministic wallets. pages 651–668, 2019.

[9] Yehuda Lindell. Cryptography and mpc in coinbase wallet as a service
(waas), 2023.

[10] Adi Shamir. How to share a secret. Communications of the ACM,
22(11):612–613, 1979.

[11] New York Times. Tens of billions worth of bit-
coin have been locked by people who forgot their
key. https://www.nytimes.com/2021/01/13/business/

12

tens-of-billions-worth-of-bitcoin-have-been-locked-by-people-who-forgot-their-key.

html.

13

