
Blockchain Transaction Conflicts: A Historical
Perspective
Supra Research
24 February 2025

Abstract
This paper presents a comprehensive analysis of historical data across two popular blockchain
networks: Ethereum and Solana. Our study focuses on two key aspects: transaction conflicts and the
maximum theoretical parallelism within historical blocks. By systematically examining block-level
characteristics—both within individual blocks and across different historical periods—we aim to
quantify the degree of transaction parallelism and assess how effectively it can be exploited.

Our findings contribute to a deeper understanding of blockchain scalability, efficiency, and its
potential for optimizing transaction processing. In particular, this study is the first of its kind to
leverage historical transactional workloads to evaluate the patterns of transactional conflicts in
blockchain networks. By offering a structured approach to analyzing these conflicts, our research
provides valuable insights and an empirical basis for developing more efficient parallel execution
models across diverse blockchain ecosystems.

1 Introduction

Smart contract virtual machines (VMs) execute a block of user-defined transactions, each
performing a sequence of read and write operations on the states of user accounts. A block
proposer, a validator node in the network, takes as input a block consisting of n transactions
and a preset total order T1 → T2 . . . , → Tn. The node attempts to execute, in parallel, the n

transactions such that the state resulting from the parallel execution of the n transactions
must be the state resulting from the sequential execution of transactions T1 · T2 · · · Tn. The
key requirement to ensure consistency across the network is that all nodes must execute
transactions in the preset order.

Smart contract VMs utilize different execution strategies that directly affect transaction
throughput. Ethereum [4] and Solana [13] represent two distinct architectures, each employing
a different transaction execution approach. Ethereum processes transactions sequentially
without prior knowledge of the states that they access. In contrast, Solana enables parallel
execution by requiring clients to specify access information for each transaction, improving
throughput. When block transactions are executed, they may modify the same account
address or storage slot in a smart contract, potentially resulting in conflicts if one transaction
accesses data modified by another.

A conflict occurs when two or more transactions access the same state and at least one
of them performs an update operation. The transactions in the block must be executed
sequentially in preset order, the order of the transactions in the block, or they must be
serializable to the preset order if executed in parallel, to provide deterministic execution
across the distributed network. The order in which conflicting transactions are executed
directly affects the final state and must be executed in order, with one waiting for the other
to finish. However, independent transactions can be executed in parallel or in any order, as
their execution does not interfere with other transactions. Transactions are independent if
they do not modify (write to) the same state and the outcome of one does not impact the
other.

The longest chain of conflicting transactions is one of the parameters that determines the



2 Analyzing Blockchain Transactional Conflicts: A Historical Perspective

maximum theoretical limit for parallelization within a given block, including the number of
conflicting transactions (resp. independent transactions), number of conflicts and different
conflict sets (conflict families). A conflict family is a group of transactions that are mutually
dependent on shared states. Identifying conflict families is essential for optimizing transaction
execution, as it helps in detecting hotspots and employing the best suitable parallel execution
strategy.

Transaction conflicts can be detected through smart contract bytecode analysis, read/write
set analysis, and optimistic execution at runtime. Efficient conflict identification and resolu-
tion with minimal overhead, including abort and re-execution costs, are crucial for enhancing
performance. The timing and cost of conflict detection and resolution significantly impacts
parallel execution efficiency. However, the distribution of conflicts and state access patterns
within historical blocks is the main focus of this study, along with the metrics we discussed
above that directly or indirectly affect the parallel execution of transactions and overall
throughput. These insights support the development of techniques that improve execution
efficiency and enhance parallelization across blockchain networks. Previous studies [8, 11]
analyzing historical Ethereum blocks have demonstrated promising potential for parallel
execution. In this paper, we analyze two blockchain networks with different transaction
execution models to better understand their conflict distributions and impact on performance.

Ethereum [4]: Ethereum employs an account-based model with sequential execution
through the Ethereum Virtual Machine (EVM). The state accessed by a transaction
is determined only at the time of block execution. We refer to this as the read-write
oblivious execution model, where read-write sets are not known a priori.
Solana [13]: Implemented Sealevel [17] for parallel execution, enabling transactions
to run in parallel within the Solana Virtual Machine (SVM). The state accessed by
transaction is known in advance as read/write sets. We call it the read-write aware
execution model.

This paper presents a detailed study of conflict relationships in these two most popular
smart contract execution paradigms. Our findings offer insights into the ground truth for the
maximum parallelism that can be extracted in historical block transactions, constrained by
inherent conflicts within the blocks.

2 Extraction of Conflict Specifications

This section describes our data extraction and conflict analysis. The fundamental definition of
a conflict remains unchanged; however, the granularity of available conflict information varies
from one blockchain to another. For instance, on Ethereum, we get access to historical block
data without distinguishing between reads/writes, whereas Solana provides more detailed
transactional data with reads and writes.

Ethereum

For our analysis, we segregate Ethereum transactions into two types: ETH transfer transac-
tions and smart contract transactions, to analyze and understand the access and conflict
patterns. The ETH transfer transactions perform pure value transfers between externally
owned addresses (EOAs) or to smart contract addresses. On the other hand, the smart
contract transactions interact with sender addresses and contract address(es) to modify
blockchain state via function calls and storage updates within the contract(s).

We trace the accessed states of all transactions within a block using the callTracer and
prestateTracer [2], which provides a full view of the block’s pre-state, the state required for the



Supra Research 3

execution of current block. We identify all EOAs, contract addresses, and storage locations
within contracts that are accessed by examining transaction data and the pre-state for it.
This enables the detection of potential conflicts arising from overlapping state modifications
by block transactions.
Ethereum Transaction Conflict: Two transactions Ti and Tj are in conflict if

Ti and Tj both access a common EOA address.
Ti and Tj both access a common storage location within a contract address.

It should be noted that two transactions are considered independent (non-conflicting)
if they are initiated by separate EOAs and access different storage locations within all the
contracts that they access. However, there is a special case that every transaction updates
the coinbase account (block proposers account) for fee payment. As a result, all transactions
are logically in conflict, unless the coinbase account is treated as an exception. For this
reason, when we analyze conflicts, we remove the coinbase account from the transactions
access set. In [10], a solution is proposed to collect the fee payment for each transaction
independently and update the coinbase account cautiously at the end of the block, allowing
the transactions to be executed in parallel.

We use an exclusive-access paradigm for our conflict analysis of Ethereum blocks. Since
read set information is not explicitly provided with prestateTracer [2] and transactions
accessList [1], we treat every operation as an exclusive update operation, which may result
in overestimating conflicts. For example, if Ti and Tj access the same state, they will
conflict in the current analysis; however, there could be no conflict if they both just read the
state in practice. Therefore, a more detailed analysis that separates accesses into read and
write operations would likely reduce the conflict numbers presented in the next section for
Ethereum.

Solana

In contrast to Ethereum, Solana transactions are made up of the account access specification,
a list of accounts to read from or write to [13], known as the read set and write set, respectively.
This specification is added to the transactions upfront by the clients through RPC node
interaction. The success or failure of a transaction depends on the freshness of its read-write
set, from the moment it is added to the transaction by the client until its execution at
the validator node. The read and write access set specification simplifies our analysis and
improves the accuracy of conflict detection for Solana blocks.

We used the beta API of Solana’s mainnet to obtain block details in JSON format with
the max supported transaction version set to 0 [14]. The extracted details are then parsed to
obtain the information required for our analysis.
Solana Transaction Conflict: Two transactions Ti and Tj are in conflict if both of them
access a common account and at least one of them is a write.

3 Conflict Analysis

This section will present our findings from the historical analysis of Ethereum (in Section 3.1)
and Solana blocks (in Section 3.2) over different time periods, focusing on the following key
aspects:

Historical periods (HP): Different time periods exhibit varying transaction loads.
We analyze peak and low-traffic periods to understand how congestion affects execution
efficiency.



4 Analyzing Blockchain Transactional Conflicts: A Historical Perspective

Table 1 Historical Blocks from Ethereum’s mainnet: 1000 blocks from each historical period,
where analysis is done based on exclusive access to accounts by transactions.

CryptoKitties
Deployment (Eck)

Ethereum 2.0
Merge (Ee2)

Ethereum Recent
Blocks (Erb)

Block ID of Historical Event 4605167 15537393 21631500
Block Range Before Event 4604664 - 4605166 15536879 - 15537392 21631000 - 21631500

Block Range After Event 4605168 - 4605670 15537394 - 15537907 21631501 - 21632001

Average Number before event - after event before event - after event before event - after event
Average Block Size 71 - 83 178 - 156 181 - 176
ETH Transfer Txs 35 - 42 66 - 42 65 - 62

Smart Contract (SC) Txs 37 - 41 113 - 114 116 - 114
ERC20 Transfer Txs 12 - 13 11 - 16 43 - 38

Independent Txs (%) 38 (61.87%) - 42 (55.70%) 87 (54.18%) - 55 (39.45%) 92 (51.73%) - 90 (51.82%)
Chain of Conflicting Txs 15 - 15 38 - 42 31 - 27

Independent ETH Transfer Txs (%) 21 (70.05%) - 24 (63.82%) 32 (62.57%) - 24 (67.72%) 49 (78.29%) - 47 (78.31%)
Independent SC Txs (%) 17 (57.20%) - 19 (52.96%) 56 (56.95%) - 32 (32.52%) 45 (39.82%) - 45 (40.32%)

Conflict Families 30 - 37 56 - 40 72 - 69

Access (read/write)-level conflicts: Identify conflicting transactions based on their
access levels or detect potential conflicts at a more granular level (reads/writes).

Independent transactions (%) that do not interfere with others and can be executed in
parallel.
Longest chain of conflicting transactions in the block.
Conflict families, a family is a group of transactions that are mutually dependent on
the shared state.
The most dense conflict family, a conflict family with most transactions.
Total conflicts and write-write conflicts between transactions.

3.1 Ethereum
As shown in Table 1, we selected three distinct historical periods (HPs) based on the major
events that impact Ethereum’s network congestion. Each of these periods allows us to
assess the blocks in different HPs, giving insights into how major events like popular dApp
launches and significant protocol upgrades affect transaction parallelism and conflicts. It also
helps us understand the limitations of parallel execution approaches under different network
conditions and historical periods.

Ethereum CryptoKitties Contract Deployment (Eck): CryptoKitties [3] game is
among the first and the most popular dApps. The CryptoKitties was deployed in block
4605167, after which an unexpected spike in transactions caused Ethereum to experience
never-before-seen congestion. The workload consists of 500 blocks each from before and
after the deployment of the CryptoKitties smart contract. We can expect this period to
receive a high volume of transactions for a contract, consequently leading to congestion
at a specific contract, as observed by an earlier study in [11]. Hence, this period is an
ideal workload for determining how well the parallel execution approach performs with a
large influx of transactions for a contract.
Ethereum 2.0 Merge (Ee2): Ethereum’s transition from proof-of-work to proof-of-stake
consensus took place at block 15537393, called the Ethereum 2.0 merge [5]. This event
has changed Ethereum’s consensus mechanism and could have optimized the transaction
processing, block validation, and network traffic in general. So in this workload, we try
to determine the direct impact of this upgrade on the parallel execution pattern that
impacts the transaction throughput and network behavior by comparing blocks before
and after the merge.



Supra Research 5

Ethereum Recent Blocks (Erb): In addition to the above historical periods, we analyze
transactions from the 1000 most recent blocks, ranging from block number 21631000
to 21632001. We selected this range to better understand current transaction access
patterns and parallelism in normal conditions when there are no major historical events
impacting the network traffic. By examining this workload, we can establish connections
between different historical periods—tracking Ethereum’s evolution, user access patterns,
network congestion over time, and the impact of optimizations on recent blocks. This
analysis also helps in developing the approaches that exploit parallelism efficiently for
future network upgrades.

Observation-1: The initial evaluation aims to understand the parallelism by distinguishing
between dependent (conflicting) and independent (non-conflicting) transactions, identifying
the longest chain of conflicting transactions, and examining conflict families both within and
across historical periods.

As shown in Table 1, transactions per block have increased since Eck HP, with contract
transactions rising ∼4× and ETH transfers ∼2×. This implies an increased demand for
computational resources and an increased adoption of blockchain technology for broad smart
contract applications (dApps).

The percentage of independent transactions per block has decreased, particularly post-
Ethereum merge, though over 50% remain independent on average. The longest conflict
chain comprises ∼19–20% of the block size, peaking at ∼22% post-merge and stabilizing
at ∼16–17% in recent blocks. This suggests that even with perfect parallelization of other
transactions, including scheduling of conflicting transactions, speedup is limited to ∼16-17%
of transactions, the theoretical upper bound on speedup over sequential execution in recent
blocks.

Compared to previous HPs, the percentage of independent ETH transfer transactions in
recent blocks has increased, whereas the number of independent smart contract transactions
has decreased, indicating an upsurge of transactions for specific contracts and diverse user
transactions for ETH transfer. However, the rise in conflict families and block sizes from the
earlier period to the more recent one suggests that there is a lot of parallelism. This can
make Ethereum’s throughput better if parallel transaction execution is employed.
Observation-2: Calculating the ratio of ETH transfers to smart contract transactions in
Table 1, comprising the historical period from Eck to Ee2 and Erb, shows an increased user
engagement with contract applications. In Eck HP, the ratio of ET H transfer

SC T xs is 38.5
39 = 0.99,

while it is ∼ 0.47 in Ee2 and ∼ 0.55 in Erb. This indicates a surge in computational costs
over time and the need for parallel transaction execution to improve network throughput.
Observation-3: To understand how many blocks in each HP have a certain percentage
(>40%, >50%, ... >80%) of independent transactions and which HP has a higher parallelism
compared to others. As shown in Figure 1, we analyzed 1000 blocks of each HP (500 before
and 500 after the event).

The number of blocks with more than 40% independent transactions has increased in
recent blocks, more than 94% of blocks have at least 40% independent transactions in Erb.
However, there was a notable decline in independent transactions after each historical event,
suggesting a spike in conflicts. Note that more than 50% of the blocks in each HP had more
than 50% of independent transactions, while post Ethereum merge Ee2 there is a significant
drop. The reasons could be increased congestion for a specific contract (the longest conflict
chain increased), a decrease in the number of ETH transfer transactions, and a slight decrease
in block size compared to pre-merge, as observed in Table 1. The number of blocks with a
higher percentage of independent transactions could increase if false conflicts are removed



6 Analyzing Blockchain Transactional Conflicts: A Historical Perspective

>40% >50% >60% >70% >80%
10

100

200

300

400

500

43
0

34
8

25
0

16
9

93

41
2

29
4

18
4

97

46

41
5

31
6

15
6

73

33

19
1

62

36 19 9

47
6

30
5

51

2 0

47
0

30
4

47

6 0

Independent Transactions per Block

B
lo

ck
s

Eck−before Eck−after

Ee2−before Ee2−after

Erb−before Erb−after

Figure 1 Ethereum: number of blocks where the percentage of independent transactions exceeds
the threshold before and after historic event.

Table 2 Ethereum Recent Historical Period (21631001–21631020): analysis based on exclusive
access to accounts by transactions.

Block ID Block
Size

ETH Transfer
Txs

SC
Txs

ERC20
Transfer Txs

Independent
Txns (%)

Chain of
Conflicts

Independent ETH
Transfer Txs

Independent
SC Txs

Conflict
Families

21631001 337 130 207 75 146 (43.32%) 56 82 66 116
21631002 148 39 109 46 69 (46.62%) 28 34 38 51
21631003 82 27 55 35 47 (57.32%) 24 23 27 38
21631004 191 65 126 59 92 (48.17%) 50 53 42 73
21631005 233 75 158 55 125 (53.65%) 52 69 57 99
21631006 154 64 90 34 86 (55.84%) 20 47 40 74
21631007 192 67 125 46 101 (52.60%) 28 57 46 75
21631008 163 60 103 47 78 (47.85%) 27 46 34 67
21631009 177 68 109 55 81 (45.76%) 39 53 31 70
21631010 207 86 121 52 81 (39.13%) 52 37 45 68
21631011 148 46 102 31 78 (52.70%) 20 41 39 61
21631012 134 46 88 32 83 (61.94%) 16 43 40 66
21631013 175 51 124 58 93 (53.14%) 34 49 45 72
21631014 200 66 134 41 109 (54.50%) 21 54 55 91
21631015 138 42 96 40 82 (59.42%) 22 40 42 68
21631016 180 68 112 58 76 (42.22%) 34 43 33 61
21631017 119 38 81 43 70 (58.82%) 26 34 38 61
21631018 230 100 130 46 113 (49.13%) 41 62 52 94
21631019 145 47 98 30 84 (57.93%) 19 36 48 67
21631020 166 55 111 39 84 (50.60%) 26 45 41 68

Average 170 60 110 45 86 (51.70%) 31 46 42 72

using complete read-write access information.

Observation-4: Table 2 highlights block-wise trends of the recent historical period (Erb

HP) where we selected 20 blocks. As shown, most blocks have more than 50% independent
transactions, with the highest parallelism in block 21631012, contains 134 transactions out
of which 61.94% are independent. The conflict chain is the shortest in this block, with
16 transactions (11.94% of the block size). In particular, most conflicts are from contract
transactions; out of 88 contract transactions, 48 are conflicting, while only 3 are conflicting
from ETH transfer transactions. Block 21631010, on the other hand, has the least parallelism,
with 210 transactions, only 39.13% of which are independent, and the longest conflict chain
involving 25.12% of the block. These blocks have an average of 170 transactions, of which
51.70% are independent. The longest conflict chain takes up 18.23% of the block size.



Supra Research 7

Table 3 Historical Blocks from Solana’s mainnet: 1000 blocks from each historical period and
analysis based on read-write sets of non-voting transactions.

Old Historical
Period (Sob)

Mid Historical
Period (Smb)

Recent Historical
Period (Srb)

Average
Block Range 61039000 - 61040210 205465000 - 205466007 293971000 - 293972009

Block Size (including Voting Txs) 519 1972 1249
Non-Voting (NV) Txs 252 113 334

Successful NV Txs 215 78 182
Conflicting NV Txs (%) 252 (100%) 101 (87%) 310 (93%)

Independent NV Txs (%) 0 (0%) 12 (13%) 23 (7%)
Chain of Conflicting NV Txs 214 52 119
Conflict Families of NV Txs 3 19 39

Dance Conflict Family of NV Txs 233 60 184
Total Conflicts of NV Txs 3664 886 3917
W-W Conflicts of NV Txs 3664 676 3751

In Ethereum’s historical blocks, over 50% of the blocks in each HP contained more
than 50% independent transactions. The theoretical upper bound on maximum speedup
is constrained by the longest conflicting chain, which accounts for approximately 16–17%
of block transactions. The change in independent transaction percentages over time and
block by block, longest conflict chains, and conflict families indicates that no single parallel
execution strategy is optimal for all blocks. Moreover, historical periods show significant shifts
in conflict patterns, with smart contract transactions being the primary source of contention.
Our observations highlight that we need an adaptive scheduling technique that dynamically
chooses the best possible execution strategy and also optimizes overall execution based on
real-time block characteristics to maximize throughput and efficiency. Alternatively, a hybrid
parallel execution model that leverages conflict information available with transactions with
minimum added overhead can maximize the performance of speculative parallel execution
and minimize aborts and re-execution overhead.

3.2 Solana
Solana was the first read-write aware blockchain to support parallel execution. Transactions
include the specification of state components that are read or written during execution.
Solana Sealevel [17] execution engine makes parallel execution feasible by using locking-based
techniques (read and write locks) to determine which transactions could be executed in
parallel in a number of iterations [16]. The longest chain of conflicting transactions determines
the minimum number of iterations required for a block, given that a sufficient number of
cores are available to fully exploit the parallelism.

To understand the distribution of conflicts in historical Solana blocks, we analyzed
1000 non-empty blocks from three distinct periods: the old historical period (Sob) from
block number 61039000 to 61040210, the mid historical period (Smb) from block 205465000
to 205466007, and the recent historical period (Srb) from block 293971000 to 293972009.
The Solana block consists of voting and non-voting transactions; we consider non-voting
transactions for our analysis.

Analysis

Observation-1: As shown in Table 3, the average block size has increased more than
2× from old HP to recent HP; however, note that this increase is contributed by voting



8 Analyzing Blockchain Transactional Conflicts: A Historical Perspective

transactions. Non-voting transactions have increased with miner margin, which has seen a
deep mid-historical period with increased voting transactions.
Observation-2: The percentage of successful non-voting transactions has decreased over
time, with the success rate of ∼85.32% in the old historical period to ∼69.03% in the
mid-historical period and to ∼54.50% in the most recent historical period. Shows that
increasing network congestion must have contributed to transaction failures, potentially
due to inaccuracies in transaction specifications; the time when specifications are generated
by users to the time when executed may differ due to intermediate ongoing execution
at the validator nodes. The exact reasons for the increased transaction failures require
further analysis; however, it could be due to increased network congestion or inaccuracies in
transaction specifications. However, it indicates the limitations and efficiency of read-write
aware execution models in high-contention periods.
Observation-3: The percentage of independent transactions in Solana blocks is considerably
lower than in Ethereum blocks. However, there is a noticeable upward trend, with independent
transactions increasing from 0% in the old historical period (Sob) to ∼7% in the recent
historical period (Srb), while the mid historical period (Smb) recorded ∼13%. This suggests
a gradual shift toward greater parallelism over time.

Since Solana employs a locking-based multi-iteration parallel execution strategy, the
number of conflict families has surged, from just 3 in Sob to 39 in Srb, suggesting that despite
high conflicts, multiple independent subsets of transactions can still be executed in parallel.
Each subset was executed in parallel with others, enhancing execution efficiency.

The longest chain of conflicting transactions, relative to the total number of non-voting
transactions in a block, has seen a substantial decline. Specifically, the longest conflict chain
has reduced by ∼ 2.3×. The longest chain of conflicting transactions decreased from 84.92%
in Sob HP to 46.01% in Smb HP and further to 35.62% in the most recent Srb HP. The number
of transactions within the most densely conflicted family has also seen downward trends. It
suggests more distributed conflicts and the possibility of improved parallel execution with
more granular bottlenecks in transaction execution. Showing that transaction access patterns
have changed over time consequently improved throughput of Solana’s read-write aware
execution model.
Observation-4: Note that the majority of conflicts are from write sets in historical blocks,
accounting for nearly 100% in the old historical period, which decreased by ∼4.24% (∼95.76%)
in recent blocks. This suggests that any approach that could minimize write-write conflicts
could significantly enhance Solana’s throughput. A potential solution could be to adopt a
multi-version data structure, similar to the one employed in Block-STM [6], which allows
parallel execution while minimizing write-write contention.
Observation-5: Table 4 highlights recent block-by-block analysis in the recent historical
period (Srb HP). As shown, the size of the block (transactions per block) varies with
significant margin. While the number of non-voting transactions remains constant, ranging
from ∼200 to ∼550 per block. Indicating increased voting activity in the network with more
participating validator nodes. On the other hand, the independent transaction percentage
varies from a minimum of ∼3.27% in block 293971006 to a maximum of ∼25.82% in block
293971014, with an average of ∼9.27%, which is considerably lower compared to Ethereum
blocks. Additionally, in all these blocks, the majority of conflicts originate from write sets.
The longest conflict chain consists of 109 transactions, accounting for ∼30.96% of the non-
voting transactions in the block, further emphasizing the possibility of write-write conflict
optimization for efficient parallel execution.

From our observations, we can conclude that independent transactions remain very low



Supra Research 9

Table 4 Solana Recent Historical Period (293971001–293971020): analysis based on read-write
sets of transactions.

Block ID Block
Size

Non-Voting
(NV) Txs

Successful
NV-Txs

Independent
NV-Txs (%)

Chain of
Conflicts

Conflict
Families

Dance Conflict
Family

Total
Conflicts

W-W
Conflicts

293971001 1179 332 167 31 (9.34%) 81 56 119 1717 1713
293971002 964 324 196 40 (12.35%) 87 61 138 1496 1488
293971003 1098 351 143 25 (7.12%) 129 47 159 2369 2367
293971004 1714 324 266 37 (11.42%) 67 57 147 3119 3096
293971005 1259 413 239 17 (4.12%) 188 28 362 3498 3386
293971006 1656 489 350 16 (3.27%) 242 27 367 15412 14717
293971007 675 392 147 17 (4.34%) 68 32 133 5366 5309
293971008 1830 308 200 52 (16.88%) 109 75 157 1489 1474
293971009 1528 298 165 21 (7.05%) 49 42 86 1984 1984
293971010 1438 401 331 14 (3.49%) 150 28 214 9111 9100
293971011 1129 431 250 20 (4.64%) 166 33 369 7892 7455
293971012 1692 375 222 33 (8.80%) 72 64 97 1496 1484
293971013 1556 218 91 44 (20.18%) 53 55 56 1572 1572
293971014 1458 213 116 55 (25.82%) 36 77 37 820 820
293971015 1425 240 135 24 (10.00%) 79 38 105 1392 1392
293971016 1850 541 313 45 (8.32%) 151 72 162 5225 4831
293971017 886 360 250 24 (6.67%) 128 44 128 9532 9516
293971018 1280 368 137 19 (5.16%) 106 32 298 5962 5440
293971019 993 314 119 22 (7.01%) 123 41 241 5492 5289
293971020 1822 349 243 33 (9.46%) 97 59 146 1637 1636

Average 1372 352 204 29 (9.27%) 109 48 176 4329 4203

in the Solana network in all three historical periods, with an average of ∼9.27% in recent
blocks, while write-write conflicts dominate and contribute to ∼95.76% of all conflicts in
the block. The longest chain of conflicting transactions has seen downward trends, from
84.92% in the old historical period to 35.62% in the recent historical period, but the number
of conflict families has upward trends from 3 to 39, indicating more granular bottlenecks
(conflicts) and increased parallelism. Further, the success rate of non-voting transactions
has dropped from ∼85.32% to 54.50%, which highlights the need for adaptive or hybrid
execution strategies that exploit the access specifications efficiently to improve throughput
and reduce failure rates.

4 Discussion from Ethereum to Solana

It is important to understand the conflict ratio of block transactions in blockchains for
efficient parallel execution. Both Ethereum and Solana exhibit significant parallel execution
potential; they differ in key aspects of available concurrency and potential blockers for
parallel execution. Ethereum, with lower conflict rates, allows for higher percentages of
independent transactions, which could result in higher parallelism, showing potential for
execution efficiency and lower abort rates in optimistic execution. While Solana’s high conflict
rates, particularly due to write-write conflicts, have resulted in more granular congestion
or transaction conflict families (subsets of conflicting transactions), they also highlight the
limitations of its current execution model. While showing scope for further optimizations.

Despite Solana’s greater transaction throughput on the mainnet, it faces the challenge
of increasing transaction failures. On the other hand, Ethereum still executes transactions
sequentially; there is ongoing research in parallel execution approaches [7, 9, 10, 12, 15]
for EVM inspired by software transactional memory that could handle such contention
more effectively for Ethereum. Given the current trends, we believe that both networks
(Ethereum and Solana, including other popular EVM and SVM-based chains) would benefit
from adaptive and hybrid scheduling techniques to exploit parallelism for higher throughput.
Solana, in particular, requires innovations to mitigate write-write conflicts, potentially



10 Analyzing Blockchain Transactional Conflicts: A Historical Perspective

through the adoption of multi-version data structures.

References
1 Chainstack. Ethereum getTransactionByBlockNumberAndIndex API Reference. https://

docs.chainstack.com/reference/ethereum-gettransactionbyblocknumberandindex, 2025.
[Accessed: 12 February 2025].

2 Chainstack. Ethereum traceBlockByNumber API Reference. https://docs.chainstack.com/
reference/ethereum-traceblockbynumber, 2025. [Accessed: 12 February 2025].

3 CryptoKitties. CryptoKitties Website. https://www.cryptokitties.co/, 2024. Accessed:
2024-10-30, Contract Address: 0x06012c8cf97BEaD5deAe237070F9587f8E7A266d, Creation
Transaction: 0x691f348ef11e9ef95d540a2da2c5f38e36072619aa44db0827e1b8a276f120f4.

4 Ethereum (ETH): open-source blockchain-based distributed computing platform. https:
//www.ethereum.org/. [Online: accessed 15 January 2024].

5 Ethereum Foundation. Ethereum 2.0 Merge. https://ethereum.org/en/upgrades/merge/,
2022. [Accessed: 06 December 2024].

6 Rati Gelashvili, Alexander Spiegelman, Zhuolun Xiang, George Danezis, Zekun Li, Dahlia
Malkhi, Yu Xia, and Runtian Zhou. Block-stm: Scaling blockchain execution by turning
ordering curse to a performance blessing. In Proceedings of the 28th ACM SIGPLAN Annual
Symposium on Principles and Practice of Parallel Programming, PPoPP ’23, page 232–244, New
York, NY, USA, 2023. Association for Computing Machinery. doi:10.1145/3572848.3577524.

7 Monad Labs. Parallel execution & monad. https://medium.com/monad-labs/
parallel-execution-monad-f4c203cddf31. [Online: accessed 10 January 2024].

8 SEI Research. 64-85% of ethereum transactions can be parallelized. https://blog.sei.io/
research-64-85-of-ethereum-transactions-can-be-parallelized, December 2024. [Ac-
cessed: 12 February 2025].

9 Supra Research. Access specification aware software transactional memory techniques for
efficient execution of blockchain transactions. Technical report, https://supra.com, February
2025. https://supra.com/documents/Supra_Specification_Aware_STM_whitepaper.pdf.

10 RISE Labs. PEVM: Parallel Ethereum Virtual Machine. https://github.com/risechain/
pevm, 2023. [Accessed: 30 October 2024].

11 Vikram Saraph and Maurice Herlihy. An empirical study of speculative concurrency in ethereum
smart contracts. In International Conference on Blockchain Economics, Security and Protocols
(Tokenomics 2019), pages 4:1–4:15, Dagstuhl, Germany, 2019. OpenAccess Series in Informatics
(OASIcs), Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik. URL: https://drops.dagstuhl.
de/opus/volltexte/2020/11968, doi:10.4230/OASIcs.Tokenomics.2019.4.

12 Sei- the layer 1 for trading. https://docs.sei.io/advanced/parallelism. [Online: accessed
22 Sep 2023].

13 Solana documentation. https://docs.solana.com/. [Online: accessed 10 January 2024].
14 Solana. Solana getBlock RPC API Reference. https://solana.com/docs/rpc/http/getblock,

2025. [Accessed: 12 February 2025].
15 Polygon Technology. Innovating the main chain: A polygon pos study in parallelization,

December 2023. [Accessed: 12 February 2025]. URL: https://polygon.technology/blog/
innovating-the-main-chain-a-polygon-pos-study-in-parallelization.

16 Umbraresearch. Lifecycle of a solana transaction. https://www.umbraresearch.xyz/
writings/lifecycle-of-a-solana-transaction. [Online: accessed 15 January 2024].

17 Anatoly Yakovenko. Sealevel - parallel processing thou-
sands of smart contracts. https://medium.com/solana-labs/
sealevel-parallel-processing-thousands-of-smart-contracts-d814b378192, Septem-
ber 2019. [Online: accessed 23 January 2024].

https://docs.chainstack.com/reference/ethereum-gettransactionbyblocknumberandindex
https://docs.chainstack.com/reference/ethereum-gettransactionbyblocknumberandindex
https://docs.chainstack.com/reference/ethereum-traceblockbynumber
https://docs.chainstack.com/reference/ethereum-traceblockbynumber
https://www.cryptokitties.co/
https://www.ethereum.org/
https://www.ethereum.org/
https://ethereum.org/en/upgrades/merge/
https://doi.org/10.1145/3572848.3577524
https://medium.com/monad-labs/parallel-execution-monad-f4c203cddf31
https://medium.com/monad-labs/parallel-execution-monad-f4c203cddf31
https://blog.sei.io/research-64-85-of-ethereum-transactions-can-be-parallelized
https://blog.sei.io/research-64-85-of-ethereum-transactions-can-be-parallelized
https://supra.com
https://supra.com/documents/Supra_Specification_Aware_STM_whitepaper.pdf
https://github.com/risechain/pevm
https://github.com/risechain/pevm
https://drops.dagstuhl.de/opus/volltexte/2020/11968
https://drops.dagstuhl.de/opus/volltexte/2020/11968
https://doi.org/10.4230/OASIcs.Tokenomics.2019.4
https://docs.sei.io/advanced/parallelism
https://docs.solana.com/
https://solana.com/docs/rpc/http/getblock
https://polygon.technology/blog/innovating-the-main-chain-a-polygon-pos-study-in-parallelization
https://polygon.technology/blog/innovating-the-main-chain-a-polygon-pos-study-in-parallelization
https://www.umbraresearch.xyz/writings/lifecycle-of-a-solana-transaction
https://www.umbraresearch.xyz/writings/lifecycle-of-a-solana-transaction
https://medium.com/solana-labs/sealevel-parallel-processing-thousands-of-smart-contracts-d814b378192
https://medium.com/solana-labs/sealevel-parallel-processing-thousands-of-smart-contracts-d814b378192

	1 Introduction 
	2 Extraction of Conflict Specifications
	3 Conflict Analysis
	3.1 Ethereum
	3.2 Solana

	4 Discussion from Ethereum to Solana

