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Abstract
In the smart contract ecosystem, the transaction contains the code to be executed, and all nodes that execute the
block of transactions must arrive at the same final state. Consequently, it becomes necessary to maximize the
parallel execution of transactions within a node and still allow all nodes to reach a consistent final state resulting
from the execution of a set of transactions.

Traditional software transactional memory has been identified as a possible abstraction for concurrent
executions of transactions within a block. However, in the smart contract setting, the execution order must
follow the preset order of the transactions in the block. This paper presents a complexity study of this model
for in-memory transactions (or block transactional memory) and investigates the fundamental lower bounds
that might exist. We ask the question: Do we need to maintain multiple versions of the values associated with
each account? To answer this, we formalize the model of block transactional memory and identify the safety
property that is needed. We show that, under natural restrictions of liveness, it is necessary for smart contract
transactions to maintain a large number of versions for each account or allow read-only transactions to write
to shared memory. We then present several algorithmic designs for single-version and multi-version block
transactional implementations that provide preset serializability.

1 Introduction

For higher throughput, smart contract ecosystems rely on parallel execution of a block of user-specified
transactions that each perform a sequence of reads and writes on user accounts [6, 13, 14, 15, 19, 30].
A block proposer node takes as input a block consisting of n transactions and a preset total order
T1 → T2 . . . ,→ Tn. The node attempts to execute, in parallel, the n transactions such that the state
resulting from the concurrent execution of the n transactions must be the state resulting from the
sequential execution of transactions T1 ·T2 · · ·Tn.

As with traditional shared memory algorithms, we may consider coarse-grained or fine-grained
locks or atomic transactions for concurrent executions of the user-specified transactions. While
safety for traditional shared memory allows the concurrent execution to be equivalent to some
sequential execution (known as serializability), safety for smart contract transactions requires the
concurrent execution must be equivalent to the exact sequential execution that respects the preset
order (transaction order) of the user-specified transactions in the block.

This paper studies the complexity of transactional memory (TM) algorithms for safe parallel
execution of smart contract transactions [15]. Intuitively, if the execution must respect the preset
order, it seemingly restricts concurrency significantly. For instance, if we consider that transaction T1

must precede T2 in the preset order (denoted T1 → T2), without a priori knowledge of the read-write
conflicts on the set of accounts accessed, committing T2 prior to the commit of T1 may result in
a safety violation. To illustrate this, consider the following execution: T1 performs the read of an
account X1 (reading value 0), following which T2 performs a read of an account X2 (reading value
0), followed by a write of a new value 1 to account X1, as shown in Figure 1. Observe in Figure 1a
that if T2 commits at this point in the execution and if T1 may wish to perform a write of a new
value 1 to X2 after the commit of T2, then the resulting execution does not respect the preset order
in any extension. Clearly, if transaction T1 commits, the resulting execution is not equivalent to
any sequential execution. Alternatively, if T1 aborts and then re-starts the execution, any read of
the account X2 will return the value 1 that is written by T2, thus not respecting the preset order, as
illustrated in Figure 1b. Consequently, Figure 1c shows that the only possible mechanism to avoid
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Figure 1 Safe execution of transactions in preset order: sub-figure (a) illustrates that when conflicting
transactions T1 and T2 execute and commit in an arbitrary order, it will result in an unsafe execution; (b)
illustrates that transactions commit in some serialization order other than preset serialization, resulting in an
unsafe execution. In sub-figure (c), to ensure safe execution, T2 waits for T1 to commit before committing.

this requires T2 to wait until T1 commits. This observation guides the motivation for this paper and to
undertake the study of the complexity of block transactional memories.

Contributions

In this paper, we formalize the model of block transactional memory [15] (à la traditional transactional
memory (TM) [26]). While traditional TMs adopt serializability and its variants for safety, block TMs
need the serialization to respect a pre-specified preset order. We precisely define this property of preset
serializability and ask if block transactional memory implementations that satisfy preset serializability
necessarily have a significant space complexity. More specifically, given a set of n transactions
and a preset order T1 → T2 . . . ,→ Tn, what is the cost of concurrency in terms of the number of
versions of each account that must be maintained? Our main lower bound shows that, under natural
restrictions of liveness, it is necessary for transactions that enforce preset serializability in block
transactional memory implementations to maintain a large number of versions for each account or
allow read-only transactions to write to shared memory. We then present the design of single-version
and multi-version block transactional implementations that provides preset serializability.
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Roadmap

The rest of this paper is structured as follows: Section 2 presents a discussion of related techniques
for smart contract parallelization and relationship of block transactional memory to traditional
transactional memory algorithms. In Section 3, we presents the technical preliminaries needed
to define the safety properties and characterize the complexity of block transactional memories.
While, Section 3.2 presents our formalization of the block transactional memory model and identify
how they are related to each other. Section 4 presents the family of block transactional memory
algorithms and how they can be augmented with hardware transactional support prevalent in today’s
CPU architectures. Section 5.3 derives the construction of the main lower bound in the paper
for the space complexity of block transactional memories. We conclude with a discussion of the
conceptual takeaways from this paper and the empirical performance of block transactional memory
implementations in today’s multi-socket shared memory architectures.

2 Related work

In this section, we provide a detailed background on the different smart contract execution models,
existing algorithms for block transactional memory and how traditional transactional memory model
and results are related to those presented in this paper.

2.1 Models for parallel execution of smart contracts
There have been several models of parallel execution of smart contract transactions in the blockchain
setting. In one model, the block proposer executes the transactions, creates the block with state-
differences and dependency information, and then propagates the block in the network for validators to
validate. In another model, the block proposer proposes the order of transactions in the block, and all
the nodes come to an agreement on the order and then execute the transactions parallelly in the order.
The first model is called the Ethereum model [12], while the second one we call the Aptos model [5].
Similarly, when transactions consist of read and write set information for parallel execution, we call
that model the Solana model [27]. There is another model where resource ownership is exploited for
parallel execution; we call this model the Sui model [29].

The above four models of execution can be classified into two distinct classes for speeding up
execution: The first class consists of techniques that employ runtime execution, such as transactional
memory, and execute the transaction speculatively in parallel; we call it read-write oblivious execution.
The second class, called read-write aware execution, requires the client’s transaction access hints to
execute transactions in parallel through preprocessing or runtime techniques.

Read-write oblivious execution (runtime speculative techniques).

In this class of executor, the goal is to execute an ordered set of transactions in parallel as if they were
executed sequentially and arrive at the same final state. The key idea is that some transactions may
not be conflicting, namely, they do not read or write any common data items; therefore, they can be
processed in parallel, enabling execution acceleration that arrives at the correct sequential result.

For the Ethereum model, the first pioneering work on parallel execution of block transactions is
proposed by Dickerson et al. [11]. They proposed to use block transactional memory (pessimistic
ScalaSTM) for parallel execution of transactions at the block proposer and a happen-before graph (a
directed acyclic graph appended to the block by the proposer) for parallel execution at the validators.
Later, Anjana et al. [3, 4] proposed an optimistic-STM based multi-version concurrency control
(multi-version timestamp ordering protocol) for parallel execution at the block proposer and directed
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acyclic graph based efficient and safe parallel execution at validators. Saraph and Herlihy [23]
proposed a simple bin-based two-phase approach. In the first phase, the proposer uses locks and tries
to execute transactions concurrently by rolling back those that lead to conflict(s). All the aborted
transactions are kept in a sequential bin and executed sequentially in the second phase. The proposer
gives concurrent and sequential bin hints in the block to the validator to execute the same schedule as
executed by the proposer.

Read-write oblivious execution with block transactional memory.

In Aptos model of parallel execution, post-ordering acceleration of transaction based on preset
serializable and multi-version concurrency control is proposed in the Block-STM [15]. Rather than
speculatively executing block transaction in any order, they employ it on ordered-sets, called the preset
serialization order. Each validator uses Block-STM independently to execute a leader proposal of
ordered set of transactions in parallel to get the same final state. This is currently been implemented in
the Aptos blockchain [5] and is the most promising approach, since it does not require any additional
information to be appended to the transactions or in the block for parallel execution.

Read-write aware execution (techniques based on hints by clients).

Transactions on blockchains like Solana [27] and Hyperledger Sawtooth [24] come up with the
specification of accounts they access in read and write mode during execution. These access hints are
utilized by the block proposers, in which the proposer statically analyses transactions to execute them
in parallel or employs a runtime scheduler that schedules the transaction to execute in parallel based
on read-write set conflicts and finally proposes the block, including the hints for parallel execution at
validators. The validators can execute the block transactions in parallel with the block proposer’s hint,
which is a crucial component of this approach. In another approach, preprocessing or static analysis
of read-write sets can also be used to generate a dependency graph between transactions. The graph
can then be used to split the transactions into different groups and execute them in parallel. Moreover,
read-write transaction information can be used as a seed for parallel execution in Block-STM [15]
and other approaches, as discussed in the previous section, to reduce abort rates.

For the Ethereum model, Amiri et al. [2] proposed ParBlockchain, a technique for parallelly ex-
ecuting block transactions in a permissioned blockchain using static analysis or speculative execution
to obtain the read-set and write-set of each transaction, then generates the dependency graph and
constructs the block. Their approach adds an extra overhead of preprocessing for parallel execution.
SeaLevel executor [30, 31] implemented in Solana [27] uses the transaction read-write set inform-
ation and locks to execute transactions in multiple iterations at the block proposer. There are two
phases involved in every iteration: the locking phase and the execution phase. Using read-write set
information, lock profiles are generated for transactions in the locking phase. Those transactions that
are not in conflict with others can be executed in parallel during the execution phase of the iteration,
while those that are in conflict are passed on to the following iteration until all the transactions in the
block are executed. The block proposer provides the iteration information inside the block for parallel
execution at validators. Similarly, Hyperledger Sawtooth [24] developed a tree-based scheduler for
parallel execution utilizing the read-write set information with transactions. Instead of using a tree
for parallel execution in Sawtooth, an efficient concurrent DAG-based parallel scheduler has been
proposed in [22].

Sui [29] defines a state storage model (called the object model) that facilitates the identification
of independent transactions. The objects may be shared or have exclusive ownership. Each object is
assigned a unique identity (ID) and consists of references to the owners’ addresses, allowing multiple
users or transactions to access them (read or write). Using the object ownership model, it is easy
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to identify dependencies by checking if transactions access the same object. Based on this object
ownership model, Sui [29] introduced parallel execution of transactions [13, 14], where transactions
that interact with owned objects can be executed in parallel because no other transaction will conflict
with those objects, while transactions that access shared objects are executed sequentially since they
may lead to conflicting accesses. Moreover, transactions that do not involve a shared object can
completely bypass consensus.

2.2 Traditional transactional memory and block transactional memory
As mentioned earlier, Aptos’s Block-STM [15] is the most recent block transactional memory im-
plementation that requires the execution of a set of transactions to be equivalent to a fixed preset
serialization order, which restricts concurrency significantly. Block-STM simplifies the concur-
rent execution requirement of sharing transaction dependency information within the block by the
block proposer for validators to get the same final state because each node is conforming to the
presetexecution order.

In this design, there are two tasks for each transaction: the execution task and the validation task,
prioritizing tasks for transactions lower in the serialization order S. A transaction may be executed
and validated several times by the scheduler. For each incarnation i of a transaction Tk, Block-STM
maintains two transaction local buffers: a read-set (Rset i

k) and a write-set (Wset i
k). The account and

respective versions that are read during the execution of the incarnation are contained in the Rset i
k.

The update is represented by (account, value) pairs and is stored in the Wset i
k. For an incarnation i

of Tk the Wset i
k is stored in the multi-version in-memory data structure. Further, an incarnation of a

transaction must pass validation once it executes. The validation compares the observed versions after
re-reading (double-collecting) the Rset i

k. Intuitively, a successful validation indicates that the Wset i
k of

an incarnation i of Tk is still legitimate and all reads in the Rset i
k are consistent, while an unsuccessful

validation implies that the incarnation i must be aborted. When a transaction Tk is aborted, it implies
that all higher transactions in S than Tk can be committed only if they get successfully validated
afterwards.

Block-STM conforms to our lower bound presented in this paper (cf. Theorem 6). The formaliz-
ation in this paper and whether the “ordering curse” from the presetordering necessitates multiple
versions is inspired by the design and presentation outlined in [15].

Relationship between traditional transactional memory and block transactional
memory.

A traditional TM implementation guarantees that the concurrent execution of a set of transactions
is equivalent to some sequential execution. The implementation proposed in [4, 11] follows this
approach at block proposer and requires block proposer to share the execution schedule in the form
of a directed acyclic graph with validators to reach the same final state.

At a conceptual level though, an implementation of transactional memory and state-of-the-art
algorithms like TL2 [10], NOrec [9], DSTM [25], etc. will not be useful for Block-STM nor will the
algorithmic techniques they employ nor any complexity bounds applicable here. That said, there are
proof techniques that have been employed for deriving complexity bounds in traditional TMs that are
very much applicable in the Block-STM context which we leverage in this paper.

Perelman et al. [21] proved that a large class of TMs called mv-permissive TMs (a transaction
can only be aborted if it is an updating transaction that read-write conflicts with another updating
transaction) cannot be online space optimal, i.e., no mv-permissive TM can keep the minimum
number of old object versions for any execution. Similarly, Kuznetsov et al. [18] showed that TMs
providing wait-free read-only transactions must maintain all the versions of the writes performed by
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updating transactions. The formalization in Section 5.3 is based on [18] and the proof of Theorem 6
is based on analogous results in [18, 21].

3 Transactional memory: Model and definitions

In this section, we formally define the model and properties of block transactional memory. We
present this as an extension of the formalism associated with models of traditional transactional
memory [16]. Throughout this paper, we consider the setting where a block of n smart contract
transactions have to be executed concurrently on an asynchronous shared memory machine.

3.1 Definitions and technical preliminaries

Transactional memory (TM)

A transaction is a sequence of transactional operations (or t-operations), reads and writes, performed
on a set of objects (alternatively, we can consider an object to represent a user account). A TM
implementation provides a set of concurrent processes with deterministic algorithms that implement
reads and writes on accounts using a set of shared memory locations. More precisely, for each
transaction Tk, a TM implementation must support the following t-operations: readk(X), where X is
an account, that returns a value in a domain V or a special value Ak /∈V (abort), writek(X , v), for a
value v ∈V , that returns ok or Ak, and tryCk that returns Ck /∈V (commit) or Ak. The transaction Tk

completes when any of its operations return Ak or Ck.

Configurations and executions.

A configuration of a TM implementation specifies the state of each location and each process. In
the initial configuration, each location has its initial value and each process is in its initial state. An
event (or step) of a transaction invoked by some process is an invocation of a t-operation, a response
of a t-operation, or an atomic primitive operation applied to a location along with its response. An
execution fragment is a (finite or infinite) sequence of events E = e1,e2, . . . . An execution of a TM
implementation M is an execution fragment where, informally, each event respects the specification
of shared memory locations and the algorithms specified by M.

For any finite execution E and execution fragment E ′, E ·E ′ denotes the concatenation of E
and E ′, and we say that E ·E ′ is an extension of E. For every transaction identifier k, E|k denotes
the subsequence of E restricted to events of transaction Tk. If E|k is non-empty, we say that Tk

participates in E, Let txns(E) denote the set of transactions that participate in E. Two executions E
and E ′ are indistinguishable to a set T of transactions, if for each transaction Tk ∈ T , E|k = E ′|k.
A transaction Tk ∈ txns(E) is complete in E if E|k ends with a response event. The execution E is
complete if all transactions in txns(E) are complete in E. A transaction Tk ∈ txns(E) is t-complete if
E|k ends with Ak or Ck; otherwise, Tk is t-incomplete.

Two executions E and E ′ are indistinguishable to a set T of transactions, if for each transaction
Tk ∈ T , E|k = E ′|k.

History.

A TM history is the subsequence of an execution consisting of the invocation and response events of
t-operations. Two histories H and H ′ are equivalent if txns(H) = txns(H ′) and for every transaction
Tk ∈ txns(H), H|k = H ′|k.
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We assume that shared memory locations are accessed with read-modify-write (rmw) primitives.
A rmw primitive event on a location is trivial if, in any configuration, its application does not change
the state of the location. Otherwise, it is called nontrivial.

We say that an execution fragment E is step contention-free for t-operation opk if the events of
E|opk are contiguous in E. We say that an execution fragment E is step contention-free for Tk if the
events of E|k are contiguous in E.

Transaction access sets.

For a transaction Tk, we denote all the accounts accessed by its t-read and t-write as Rset(Tk) and
Wset(Tk) respectively. We denote all the t-operations of a transaction Tk as Dset(Tk). The read set
(resp., the write set) of a transaction Tk in an execution E, denoted RsetE (Tk) (and resp. WsetE (Tk)), is
the set of accounts that Tk attempts to read (and resp. write) by issuing a t-read (and resp. t-write)
invocation in E (for brevity, we sometimes omit the subscript E from the notation). The data set of Tk

is Dset(Tk) = Rset(Tk)∪Wset(Tk). Tk is called read-only if Wset(Tk) = /0; write-only if Rset(Tk) = /0
and updating if Wset(Tk) ̸= /0.

Legal reads.

Let H be a t-sequential history. For every t-operation readk(X) in H, we define the latest written value
of X as follows: if Tk contains a writek(X , v) preceding readk(X), then the latest written value of X
is the value of the latest such write to X . Otherwise, the latest written value of X is the value of the
argument of the latest writem(X , v) that precedes readk(X) and belongs to a committed transaction in
H. This write is well-defined since H can be assumed to start with an initial transaction (Tinit ) writing
to all accounts.

Legal histories.

We say that a t-sequential history S is legal if every t-read of an account returns the latest written
value of this account in S. It means that t-sequential history S is legal if all its t-reads are legal.

3.2 Block transactional memory

3.2.1 Read-write oblivious block transactional memory.
Unless otherwise specified, this paper considers BSTM implementations in which, for every execution
E, DsetE (Tk) is unknown (to Tk and every other transaction in E) at the start of transaction Tk in E.
More specifically, let E be an execution such that Tk ̸∈ txns(E) and let E · e be an extension in which
Tk performs an invocation of associated with some account Xi. Then, we consider that DsetE (Tk)
only contains Xi in E · e and other accounts that might be accessed by Tk in any extension of E · e is
unknown both to Tk or any other transaction in E ·e. More generally, if we consider E be an execution
in which Tk has only invoked m t-operations involving at most m accounts, then we consider that
DsetE (Tk) only contains these m accounts in this execution.

Given a set of n transactions with a preset order T1 → T2 → ...→ Tn, we need a deterministic
concurrent execution protocol that efficiently executes the block transactions utilizing the serialization
order and always leads to the same state even when executed sequentially. So, the objective is to
concurrently execute the block transactions with the given preset order, but without knowing the
transaction’s read and write sets at start of the transaction invocation, such that concurrent execution
always produces a deterministic final state that is equivalent to the state produced by sequentially
executing the transactions in the preset order.
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▶ Definition 1 (Preset serializability). Let H be a history of a BSTM[1,. . . , n] implementation
M. We say that H is preset serializable if H is equivalent to a legal t-sequential history S that is
H1 · · ·Hi ·Hi+1 · · ·Hn where Hi is the t-complete history of transaction Ti. We say that a BSTM[1,. . . ,
n] implementation M is preset serializable if every history of M is preset serializable.

We refer to a read-write oblivious BSTM implementation with a preset order T1 → T2 → ...→ Tn

as BSTM[1,. . . , n].

3.2.2 Read-write aware block transactional memory.
As taxonomized in Section 2, block transactional memory implementations can also provide with
the read and write set of accounts right at the start of the transaction itself. This is indeed the model
adopted by smart contract ecosystems like Solana [27]. For pedagogical purposes, we articulate this
model although this paper is primarily concerned about the Read-write oblivious block transactional
memory model.

We say that a BSTM implementation is read-write aware if for every execution E, RsetE (Tk) (and
resp. WsetE (Tk)) are known at the start of the transaction Tk in E. Thus, unlike a Read-write oblivious
block transactional memory, a transaction Tk may be fully aware of its entire DsetE (Tk) right before
invoking the first t-operation and write this to shared memory for other transactions to read.

We refer to a read-write aware BSTM implementation with a preset order T1 → T2 → . . .→ Tn as
BSTM[(Rset(T1), Wset(T1)); . . .; (Rset(Tn), Wset(Tn))].

4 Block-TM algorithms

This section presents algorithms for the design of read-write oblivious block transactional memory
implementations.

4.1 A single-version algorithm
We now present the design of a preset serializable BSTM[1,. . . , n] implementation that maintains
exactly one version of every account.
Implementation state. For every account X j, we maintain a memory location v j that stores the value
of X j. Additionally for a BSTM implementation M[1,. . . , n], for each transaction Tk, we maintain a
memory location Entry[k] which is a binary variable indicating if Tk has completed.

Read implementation. Consider any transaction Tk executed by process pk. The implementation
of readk(X j) first checks if the item is already contained in Wset(Tk) and if so, adopts that value.
Otherwise, Tk reads the value of the account from v j and adds it to its read set.

Write implementation. The writek(X ,v) implementation simply stores (or updates if previously
written to the same account) the value v locally, deferring the actual update in the shared memory to
tryCk.

Commit implementation. During tryCk, each transaction Tk checks if Entry[k−1] = true and then
if it is read-only, it simply returns Ck. During tryCk, if Tk is an updating transaction, it performs a
validation of the read set and aborts the transaction if validation fails. Finally, on successful validation,
optionally, if the system supports hardware transactions, it updates the write set using a hardware
transaction; otherwise, Tk updates its write set to the shared memory and updates Entry[k]= true.
The very first transaction, T1, can simply write without validation since there will be no transaction
preceding it in preset, and T2 cannot commit until previous Entry[1] is set to true. Observe that, the
read set invalidation only can occur because of a transaction Ti preceding Tk in the preset order and
not one succeeding Tk in the preset order.
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Algorithm 1 Strict serializable single-version BSTM[1,. . . , n] implementation L; code for transac-
tion Tk

Data: Shared locations- v j, for each account X j , allows reads and writes
1 function readk(X j):
2 if X j ̸∈ Wset(Tk) then

// X j is not in the Wsetk, read from shared memory
3 ov j := read(v j)
4 Rset(Tk) := Rset(Tk)∪{X j,ov j}
5 else
6 ov j :=Wset(Tk).locate(X j) // X j is in the Wset(Tk)

7 return ov j

8 function writek(X j,v):
9 nv j := v

10 if X j ̸∈ Wset(Tk) then
11 Wset(Tk) := Wset(Tk)∪{X j,nv j}
12 else

// X j is in Wset(Tk), update current value to v
13 Wset(Tk) := Wset(Tk).update(X j,nv j)

14 return ok

15 function tryCk():
16 if k=1 then
17 goto Line 22

18 if Entry[k−1]= false then
19 wait until Entry[k−1]= true

20 if ∃X j ∈ Rset(Tk): ov j ̸= read(v j) then
21 return Ak

// Check if system supports hardware transactions
22 if _xtest() then
23 htmk(Wset(Tk))

24 else
25 forall X j ∈ Wset(Tk) do
26 write(X j,nv j)

27 write(Entry[k],true)
28 return Ck

29 function htmk(Wset(Tk)):
30 htk = _xbegin()
31 if htk._xbegin_started() then
32 forall X j ∈ Wset(Tk) do
33 write(X j,nv j)

34 htk._xend()
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4.2 Proof of correctness
Let E by any finite execution of the Algorithm 1. Let <E denote a total-order on events in E. Let H
denote a subsequence of E constructed by selecting linearization points of t-operations performed in
E. The linearization point of a t-operation op, denoted as ℓop is associated with a memory location
event or an event performed during the execution of op using the following procedure.
Completions. First, we obtain a completion of E by removing some pending invocations and adding
responses to the remaining pending invocations involving a transaction Tk as follows: every incomplete
readk, writek, tryCk operation is removed from E along with every aborted transaction in E.
Linearization points. We now associate linearization points to t-operations in the obtained completion
of E as follows: For every t-read opk that returns a non-Ak value, ℓopk is chosen as the event in
Line 3, else, ℓopk is chosen as invocation event of opk. For every t-write opk that returns a non-Ak

value, ℓopk is chosen as the event in Line 9, else, ℓopk is chosen as invocation event of opk. For every
opk = tryCk that returns Ck, ℓopk is associated with Line 27. <H denotes a total-order on t-operations
in the complete sequential history H.
Serialization points. The serialization of a transaction Tj, denoted as δTj is associated with the
linearization point of a t-operation performed during the execution of the transaction. We obtain
a t-complete history H̄ from H as follows: for every transaction Tk in H that is complete, but not
t-complete, we remove it from H.

H̄ is thus a t-complete sequential history. A t-complete t-sequential history S equivalent to H̄
is obtained by associating serialization points to transactions in H̄ as follows: If Tk is an update
transaction that commits, then δTk is ℓtryCk . If Tk is a read-only transaction in H̄, then δTk is assigned
to the linearization point of the last t-read in Tk. Let <S denotes a total-order on transactions in the
t-sequential history S.

▷ Claim 2. S is legal.

Proof. Observe that for every read j(X) → v, there exists some transaction Ti that performs writei(X ,v)
and completes the event in Line 9 to write v as the new value of X . Note that the first transaction,
T1, can be committed without any read-set validation since there will be no transaction preceding it
in preset order. For any updating committing transaction Ti, δTi = ℓtryCi . Since read j(X) returns a
response v, the event in Line 3 must succeed the event in Line 27 when Ti changes Entry[i] to true.
Since δTi = ℓtryCi precedes the event in Line 25, it follows that δTi <E ℓRead j(X),.

We now need to prove that δTi <E δTj . Consider the following cases: if Tj is an updating committed
transaction, then δTj is assigned to ℓtryC j . But since ℓread j(X) <E ℓtryC j , it follows that δTi <E δTj . If
Tj is a read-only, then δTj is assigned to the last t-read that returned a value. Again, it follows that
δTi <E δTj .

To prove that S is legal, we need to show that, there does not exist any transaction Tk that returns
Ck in S and performs writek(X ,v′); v′ ̸= v such that Ti <S Tk <S Tj. Now, suppose by contradiction that
there exists a committed transaction Tk, X ∈Wset(Tk) that writes v′ ̸= v to X such that Ti <S Tk <S Tj.

Since Ti and Tk are both updating transactions that commit, (Ti <S Tk) implies that (δTi <E δTk )
and (δTi <E δTk ) implies that (ℓtryCi <E ℓtryCk ).

Now observe that, since Tj reads the value of X written by Ti, one of the following is true:
ℓtryCi <E ℓtryCk <E ℓread j(X) or ℓtryCi <E ℓread j(X) <E ℓtryCk .

Observe that the case that ℓtryCi <E ℓtryCk <E ℓread j(X) is not possible. This is because the value
of the account X will have been overwritten by transaction Tk and read j(X) should have read
the value written by Tk and not Ti—contradiction. Consequently, the only feasible case is that
ℓtryCi <E ℓread j(X) <E ℓtryCk . We now need to prove that δTj indeed precedes δTk = ℓtryCk in E.

Now consider two cases:
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Suppose that Tj is a read-only transaction. Then, δTj is assigned to the last t-read performed by
Tj. If read j(X) is not the last t-read, then there exists a read j(X ′) such that ℓread j(X) <E ℓtryCk <E

ℓread j(X ′). But then this t-read of X ′ must abort since the value of X has been updated by Tk since
Tj first read the account X (and thus would not be part of the constructed S)—contradiction.
Suppose that Tj is an updating transaction that commits, then δTj = ℓtryC j which implies that
ℓread j(X) <E ℓtryCk <E ℓtryC j . Then, Tj must necessarily perform the validation of its read set
(Line 20) and return A j—contradiction.

It follows that in S as constructed, every t-read returns the value of the latest written value in S. ◀

▷ Claim 3. If Ti → Tj, then Ti <S Tj.

Proof. This follows immediately from the assignment of serialization points. More specifically,
since every transaction Tk sets Entry[k] = true only after transaction Tk−1 sets Entry[k−1] = true,
it follows now, by the construction of serialization points for S that the preset order is respected in
S. ◀

▷ Claim 4. For all i; 1 ≤ i < n, if Ti commits within a finite number of its own steps, then Ti+1 also
commits within a finite number of its own steps in E.

Proof. Observe that the only spin check employed by the implementation is the checking of the
Entry location associated with the preceding transaction in the preset order. Consequently, if Ti

commits by setting Entry[i] = true, then Ti+1 must also commit within a bounded number of steps in
its execution. ◀

5 Single-version to multi-version

5.1 How multi-versioning can help?
To understand how multi-versioning will help with a BSTM implementation M[1, . . . ,n], consider the
scenario as shown in Figure 2, where T2 is an updating transaction that performs a write of the value 1
to accounts X1 and X2 which starts execution after the t-read of X1 by T1 that returns the initial value
0 of X1 following which T2 performs the writes to X1 and X2 and commits. Observe that if we extend
this execution with T1 performing a t-read of X2, maintaining multiple versions allows this read of X2

to return the old value 0 thus preserving preset serializability, as illustrated in Figure 2b. On the other
hand, a single-version implementation (Figure 2a) will necessarily need to force transaction T2 to
wait until T1 finishes and additionally, perform a shared memory write to indicate the presence of the
read-only transaction.

Now consider the modification of the above execution in Figure 2c, where we have T2 performing
a t-read of X1 (returning 0) followed by the updating transaction T1 running to completion and then
T2 resumes with a t-read of X2. Note that in this scenario, it is possible for T2 to validate the read
set during the t-read of X2, then re-try T2 and return the last written values of X1 and X2 by updating
transaction T1.

5.2 The multi-version block transactional memory implementation
For the multi-version block transactional memory, where for each account Xi, we maintain a memory
location vi that stores a set of tuples ([v1,k], [v2,k′], . . . ), each tuple [v,k] is the value of Xi and k is
the transaction Tk that wrote that value v.

Read implementation. The implementation of readk(X j) first checks if the account X j is already
contained in Wset(Tk) and if so, adopts that value. Otherwise, Tk reads the value of the account X j
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T1

T2

Preset Order: T1→T2

X1: 0 1
X2: 0 1

read1(X1)→0

write2(X2, 1) tryC2write2(X1, 1)

read1(X2)→1

(a) Single-version: safety violation of preset order T1→T2

T2 should wait until T1 commits for
safe execution, as shown in Figure 1c

T1

T2

read1(X1)→0

write2(X2, 1) tryC2write2(X1, 1)

read1(X2)→0

(b) Multi-version: case 1

tryC1

tryC1

X1: 0, 1
X2: 0, 1

T1

T2

read2(X1)→1

write1(X2, 1)write1(X1, 1)

read2(X2)→0

(c) Multi-version: case 2

tryC1

X1: 0, 1
X2: 0, 1

read2(X1)→1 read2(X2)→1 tryC2

re-execute T2

inconsistent read

Figure 2 Single-version to multi-version: with two transactions T1 and T2 and a preset order T1→T2,
sub-figure (a) shows that when accounts X1 and X2 have a single version in the shared memory, the transaction
T2 should wait for T1 to commit first for safe execution; (b) and (c) illustrate when multi-version is useful and
when it is not useful while executing the transactions safely in the preset order, respectively.

from the largest version by a transaction Ti such that Ti→Tk in preset order and adds it to its read
set. The method read_lvp() finds and returns the value of the largest version created by a preceding
transaction, along with the transaction identifier. The version list will never be empty since an initial
version for account X j is created during initialization by Tinit .

Commit implementation. If Tk is a read-only transaction, it performs its read set validation; if any
read becomes invalid by a lower-order transaction, then it returns Ak; otherwise, it reads the updated
value and returns Ck. If Tk is an updating transaction, it performs a validation of the read set by
re-reading the corresponding versions of each account it reads and aborts the transaction if validation
fails. A read set validation fails when at least one preceding transaction Ti (s.t. Ti → Tk) updates
the new version for account X j after the version read by the Tk. Finally, on successful validation,
optionally, if the system supports hardware transactions, it updates the write set using a hardware
transaction; otherwise, Tk updates its write set to the shared memory and sets the Entry[k]= true.
Observe that for updating transactions, the read set invalidation can occur when a new version is
created by a transaction Ti preceding Tk in the preset order and not one succeeding Tk.
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Algorithmic optimizations

We remark that the linear (in the size of the transaction’s read set size) validation cost can be mitigated
in some executions by employing a global timestamp, as employed by traditional TM implementations
like TL2 [10]. The read validation is performed only if the global timestamp has changed since the
start of the transaction, thus indicating the presence of a concurrent updating transaction that has
committed. However, this might affect performance on Non-Uniform Memory Architectures because
of lack of disjoint-access parallelism [8, 17]. This is because the timestamp will need to be updated
even by transactions that do not have a read-write conflict over their respective datasets.

5.3 The Cost of Versioning
In this section, we derive how the preset order imposes the need to keep multiple versions of every
account that is being updated by all the updating transactions. In other words, given a block of n
transactions, there exist executions in which O(n) distinct versions of every account might need to be
maintained as shared memory state or read-only transactions might need to write to shared memory
to inform updating transactions about their presence.

Read invisibility [8, 18]. Informally, in a TM using invisible reads, a transaction cannot reveal any
information about its read set to other transactions. Thus, given an execution E and some transaction
Tk with a non-empty read set, transactions other than Tk cannot distinguish E from an execution in
which Tk’s read set is empty. This prevents TMs from applying nontrivial primitives during t-read
operations and from announcing read sets of transactions during tryC.

Formally, a TM implementation M uses invisible reads if for every execution E of M: for every
read-only transaction Tk ∈ txns(E), no event of E|k is nontrivial in E.

▶ Definition 5. Let E be any execution of a TM implementation M. We say that E maintains c
values {v1, . . . ,vc} of account X, if there exists an execution E ·E ′ of M such that

E ′ contains the complete executions of c t-reads of account X and,
for all i ∈ {1, . . . ,c}, the response of the ith t-read of X in E ′ is vi, and if the response of the ith

t-read of X in E ′ is r ̸= vi, then E ·E ′ is not an execution of M.
We say that a Block-STM implementation M provides sequential TM-progress if for every finite
execution E of M in which every transaction is t-complete, every transaction Tk that runs t-sequentially
is committed.

▶ Theorem 6. Consider any BSTM[1,. . . , n] implementation with sequential TM-progress. Then
M has an execution in which it uses n− 1 versions of each account accessed by some read-only
transaction or the read-only transaction does not have read-invisibility.

Proof. As illustrated in Figure 3, consider an execution E that consists of a read-only transaction
T1 that performs a t-read of account X1 that returns the initial value 0 of X1. We will assume that
the read-only transaction T1 is invisible. Immediately following the t-read, consider the following
extension:

The t-complete execution of an updating transaction T2 that writes value 1 to account X1 and
writes value 1 to account X2. Since T1 is invisible (by assumption), transaction T2 must commit
(by assumption of liveness).
Now we extend this execution with a transaction T3 that performs a t-read of X1 (this must return
the value 1).
Following this, we introduce a new updating transaction T4 that writes value 2 to accounts X1 and
X2.
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T1

T2

Preset Order: T1→T2→T3→T4 Committed Transactions: T2

read1(X1)→0

write2(X2, 1) tryC2write2(X1, 1)

T3

read3(X1)→1

T4

write4(X2, 2)write4(X1, 2)

read3(X2)→1

read1(X2)→0

Figure 3 Invisible read and safe execution: example showing four transactions T1, T2, T3, T4 and a preset
order T1→T2→T3→T4, where T1 and T3 are read-only transactions, while T2 and T4 are updating transactions.
T1 is an invisible read transaction, while T2 is a committed transaction. The execution is showing the values read
and written by transactions during safe execution in preset order.

Now we extend read-only transaction T3 that performs a t-read of X2. Since T3 precedes T4 in the
preset order, we require that the value returned by the t-read of X2 be the latest written value of X2

in the t-sequential history T1 ·T2 ·T3. Consequently, the only value that the t-read of X2 by T3 can
return in any extension of this execution is the value 1 (observe that this is true even if T3 aborts
and re-runs in a step-contention free execution).
Immediately following the t-complete execution of T4, transaction T1 resumes execution and
performs a t-read of X2.

Since T1 is the first transaction in the preset order, the only value this t-read can return is the initial
value 0. Observe that, in this execution, we require that we need both versions of X2 (0 and 1) to be
maintained. ◀

Implication for Read-write aware block transactional memory

We now argue that the lower bound on versioning applies also to a restricted class of read-write aware
BSTM implementations. We consider the set of strict data-partitioned implementations [16] which
intuitively forces two transactions which access disjoint sets of accounts to not access a common
memory location. Intuitively, this restriction when applied to a BSTM[(Rset(T1), Wset(T1)); . . .;
(Rset(Tn), Wset(Tn))] makes this only as useful as the read-write oblivious model.

Formally, a BSTM implementation M is strict data-partitioned [16], if for every account X , there
exists a set of memory locations LocM(X) such that

for any two accounts X1,X2; LocM(X1) ∩ LocM(X2) = /0,
for every execution E of M and every transaction T ∈ txns(E), every memory location accessed
by T in E is contained in LocM(X) for some X ∈ Dset(T )
for all executions E and E ′ of M, if E|X = E ′|X for some account X , then the configurations after
E and E ′ only differ in the states of the memory locations in LocM(X). Here, E|X denote the
subsequence of the execution E derived by removing all events associated with account X .

To understand how the construction in Theorem 6 can be applied to strict data-partitioned block
transactional memory implementations, consider the execution involving two transactions T1 and T2:
T1 reads account X1, then T2 performs writes of new values to accounts X1 and X2. Observe that, by
assumption of invisible reads, such an execution exists. By assumption of strict data-partitioning, the
t-read of X1 by T1 cannot access memory locations associated with X2 and thus, cannot pre-read the
values associated with X2. Consequently, when we extend this execution with the t-read of account
X2 by T1, the initial value of X2 (prior to the update by T2) must be returned. Thus, intuitively, both
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versions of X2 must be maintained. Extending this argument to the construction of the multi-phased
execution in Theorem 6, the proof follows.

Remarks. We remark that, while the definition of strict data-partitioning might seem overly restrictive
(for e.g., global timestamps or process-specific shared memory locations might not be used), we
conjecture that it is possible to extend the equivalence to a more practical model of block transactional
memory implementations (analogous to those developed for traditional in-memory transactions [1, 7]
that could incorporate the delineation of “value” of the account from the “metadata” associated with
shared memory synchronization).

6 Discussion

Reduced hardware transactions Intel shared memory architectures support hardware transactions that
allow the atomic execution of a set of transactional reads and writes. Specifically, current CPUs
have included instructions to mark a block of memory accesses as transactional, allowing them to
be executed atomically in hardware. Hardware transactions typically provide automatic conflict
detection at cacheline granularity, thus ensuring that a transaction will be aborted if it experiences
memory contention on a cacheline. Typically, if the hardware transaction is executed sequentially,
i.e., in the absence of step-contention, the transaction will commit.

In the read-write oblivious block transactional memory model, the ordering curse that comes from
the preset order prevents a transaction Tj from committing before transaction Ti when Ti → Tj (as
explained in Figure 1). Thus, the execution of a set of transactional writes may almost need to be
carried out sequentially, thus perfectly supporting the use of hardware transactions. As described in
Algorithm 1 (Lines 22, 23, 30-34), the writes of the values in a transaction’s write set are carried by a
hardware transaction and should succeed with high probability. It is an open question if hardware
transactions can be exploited in a more comprehensive way for block transactional memory, akin to
attempts with traditional TMs [10, 16, 26].
Relaxing preset serializability The definition of preset serializability (Definition 1) requires reads of
accounts to return the latest written value to that account respecting the preset order. However, certain
workloads in smart contract ecosystems might not require such restrictions allowing for the possibility
of relaxed account semantics. This might allow the development of different algorithmic techniques
and yield block transactional memory implementations with better performance.
Equivalence between read-write aware and read-write oblivious models For any parallel execution
approach in both the read-write aware and read-write oblivious settings, identifying the conflicts
between transactions and resolving them efficiently is the key to increased transaction throughput [6,
13, 14, 15, 19, 30]. As we have articulated in Section 2, smart contract parallel execution models
seek to provide hints about transactions to the parallel execution engine so enable potentially faster
execution, thus overcoming the restrictions of respecting the preset order. Both Solana [27] and
Sui [29] equip the transactions with a priori state access information about the read-write sets along
with potential transactional conflicts (in the case of the latter). Whether these models yield concrete
complexity separation results against the read-write oblivious model remains an outstanding open
question.

Read-write aware models may require more effort from developers to avoid the aborts of optimistic
execution of read-write oblivious settings. However, it allows for more localized dynamic gas fee
marketplaces; if dependencies are specified a priori, transactions occurring in a congested contract of
the blockchain state might be processed separately from others; to prevent a localized state hotspot
from increasing fees for the whole blockchain network. For example, a popular non fungible token
(NFT) mint could create a large number of transaction requests in a short period of time [20]. A
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blockchain based on a read-write aware setting can detect state hotspots upfront, such as the NFT
minting, to rate limit and charge a higher fee for transactions containing them [28, 14]. This enables
ordinary transactions to execute promptly, while transactions related to the minting process are
prioritized independently based on the total gas associated with them and the resulting congestion.
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