
Auto-Balancer: Harnessing idle network resources for enhanced

market stability

Arman Abgaryan, Utkarsh Sharma∗

Supra DeFi Research

January 2025

Abstract

We propose a mechanism embedded into the foundational infrastructure of a blockchain network, de-
signed to improve the utility of idle network resources, whilst enhancing market microstructure efficiency
during block production by leveraging both network-owned and external capital. By systematically seeking
to use idle network resources for internally capture arbitrageable inefficiencies, the mechanism mitigates
extractable value leakage, reduces execution frictions, and improves price formation across venues. This
framework optimises resource allocation by incentivising an ordered set of transactions to be identified
and automatically executed at the end of each block, redirecting any realised arbitrage income - to mar-
ketplaces operating on the host blockchain network (and other stakeholders), which may have otherwise
been extracted as rent by external actors. Crucially, this process operates without introducing additional
inventory risk, ensuring that the network remains a neutral facilitator of price discovery. While the system-
atic framework governing the distribution of these internally captured returns is beyond the scope of this
work, reinvesting them to support the ecosystem deployed on the host blockchain network is envisioned
to endogenously enhance liquidity, strengthen transactional efficiency, and promote the organic adoption
of the blockchain for end users. This mechanism is specifically designed to operate on Supra’s blockchain,
leveraging its automation framework to enhance the network’s efficiency.

1 Introduction

The efficiency of markets operating on the host blockchain network depends on their ability to facilitate
seamless transactional execution, thereby impacting price discovery, liquidity allocation, and overall market
microstructure. However, during routine operations, user transactions in the markets can inadvertently cre-
ate arbitrage opportunities. While external agents which contribute to reasserting market equilibrium by
correcting inadvertent price deviations provide valuable contribution to the market microstructure, their ac-
tivities may cost marketplaces operating on the host blockchain network (for e.g., through adverse selection
and impermanent loss). Further, the reliance on external arbitrageurs may introduce latency in execution,
exacerbates price impact, and increases the risk of network congestion due to competitive transaction bid-
ding. From the perspective of the host blockchain network, suboptimal utilisation of computational resources
presents another inefficiency: while congestion can degrade user experience and increase transaction costs,
under-utilisation represents an opportunity cost in terms of foregone revenue and economic inefficiency.

We propose a framework that jointly addresses these inefficiencies by enabling the host blockchain network to
discover a set of ordered transactions which would internalise arbitrage opportunities emerging during block
production, while simultaneously leveraging under-utilised computational resources. By executing these bal-
ancer transactions, which are initiated and executed by the host blockchain network rather than external
entities, the proposed mechanism captures and redistributes profits that would otherwise be taken by exter-
nal arbitrageurs. This improves capital efficiency and strengthens market microstructure. Simultaneously,
the framework decreases reliance on independent arbitrage bots, potentially reducing execution latency while
ensuring that arbitrage-derived profits are equitably distributed among network participants. By capturing
arbitrageable value, a portion of gains can be directed toward marketplaces operating on the host blockchain
network, mitigating impermanent loss and improving market-making incentives. Furthermore, by seeking
to synchronise on-chain prices across trading venues, the protocol minimises cross-market fragmentation, re-
duces transient pricing inefficiencies, and improves execution quality for traders and liquidity providers alike.

∗Acknowledgment: The authors thank Joshua Tobkin for his invaluable guidance and support in this work.

1

These enhancements not only improve economic sustainability and systemic efficiency but also enhance the
profitability of price-sensitive protocols operating on the network, while preserving a seamless and predictable
trading environment.

Embedding the automated arbitrage monetisation process directly within the network’s block production
mechanism enhances market stability and improves the resilience of price-sensitive applications. By system-
atically responding to mispricing conditions in real time, the protocol fosters a more liquid, stable, and efficient
trading environment, while simultaneously diminishing the need for discretionary intervention from external
agents. This automated approach to market efficiency reduces information asymmetry, and reduces the risk
of transaction ordering manipulation. Furthermore, by directing arbitrage-derived revenues to the protocol’s
treasury—and redistributing them to price-sensitive applications operating on the host blockchain—the frame-
work supports long-term ecosystem development, enhances security incentives, and fosters a more competitive,
self-sustaining market infrastructure.

2 Objectives

The proposed protocol aims to enhance the efficiency of markets operating on the host blockchain network, by
internalising arbitrage opportunities within block production. In doing so, it pursues two primary objectives:
(i) minimising emerging price discrepancies to improve market efficiency; and (ii) optimising network resource
utilisation.

For each market i ∈ M, let P a
i (x) ∈ R+ be the effective price (of an asset a) after executing a set of

transactions x in the network, the arbitrageable price discrepancy (∆a
ij(x) ∈ R+) between markets i and j is

defined as:
∆a

ij(x) =
∣∣P a

i (x)− P a
j (x)

∣∣ .
We seek to minimise the cumulative price discrepancy:

min
x∈X

E

 ∑
i,j∈M,i̸=j

∑
a∈A

∆a
ij(x)

 ,
where X denotes the set of feasible transaction sequences that satisfy condition K:

X = {(x1,x2, . . . ,xn) | K(x1,x2, . . . ,xn) = 1}

where K is a binary condition function which returns 1 if the sequence is feasible based on technical conve-
nience and economic utility of the submitted transactions; and A denotes the universe of assets.

Separately, and not necessarily combined with the preceding objective, we also seek to optimise the utilisation
of the host blockchain network’s resources. As such, let w denote the amount of work (w ∈ [0, C], C ∈ R+)
- for e.g., computational, allocated within a block, and C represent the block’s maximum capacity, to define
the block utilisation as:

U(w) =
w

C
.

Now, to account for the marginal impact of additional work allocation to the network’s performance, let ψ(w)
represent the performance cost incurred when executing w work in a block. As such, to ensure that network
performance remains acceptable, we impose a probabilistic constraint (δ):

E[ψ(w)] ≤ δ.

This leads us to assemble the resource optimisation problem as follows:

max
w∈[0,C]

U(w) =
w

C

subject to w ≤ C,

E[ψ(w)] ≤ δ.

Now, since both objectives must be achieved simultaneously, the protocol addresses the following multi-
objective optimisation problem:

min
x∈X

λ1 E

 ∑
i,j∈M,i̸=j

∑
a∈A

∆a
ij(x)

− λ2
w(x)

C
,

2

subject to E[ψ(w(x))] ≤ δ.

where λ1, λ2 are weights balancing two objectives; w(x) is the work function, describing the amount compu-
tational work allocated within a block when executing a given set of transactions x.

In essence, Auto-Balancer seeks to ensure that arbitrage transactions are optimally executed to reduce inter-
market price discrepancies, while efficiently using the host blockchain network’s idle computational resources.

3 Algorithmic Framework

Auto-balancer is an endogenous framework integrated directly into the host blockchain network’s (Supra)
block production process. Its purpose is to utilise the host blockchain network’s idle resources to internalise
arbitrage opportunities that would otherwise be exploited by external agents. By doing so, it improves market
efficiency, reduces the probability of losses related to extractable value emerging, and redistributes the gains
to network stakeholders — without introducing inventory risk.

The Auto-balancer is designed to internalise arbitrage opportunities within the host blockchain’s block pro-
duction cycle by introducing balancer transactions - which focus on racing to capture emerging arbitrageable
value, to be executed after user-initiated transactions, within a block. However, since the exact gas con-
sumption of user-initiated transactions within a given block is not deterministically known ex-ante, balancer
transactions must be ordered based on their expected contribution to arbitrage capture, as they are only
executed using idle resources in the block. As such, transactions with a higher probability of capturing ar-
bitrageable value should be assigned a greater likelihood of execution, ensuring efficient resource allocation
within the block’s computational constraints.

We now explain the algorithmic framework in the following steps:

• (Step 1) User-initiated Submissions: Users submit a set of transactions,

Tu = {Tu,1, Tu,2, . . . , Tu,M},

which are incorporated into the upcoming block.

• (Step 2)State Transition: Once executed, these transactions transition the blockchain from state:

St = {Sc1
t ,S

c2
t , . . . ,S

cm
t }

where Sc1
t is the set of states, associated with smart contract c1 after t-th state update, which updates

to:
St+n = {Sc1

t+n,S
c2
t+n, . . . ,S

cm
t+n},

capturing all changes in state variables resulting from user transactions.

• (Step 3) Balancer Transactions execution: After user transactions, balancer transactions are exe-
cuted, which query a reference market (R), for e.g. DFMM [1], for a price vector for N assets:

PR
t+n = {pRi,t+n}Ni=1,

and collecting prices from J other venues:

Pt+n = {Pj
t+n}Jj=1, with Pj

t+n = {pji,t+n}
N
i=1.

Now, for each asset i and venue j, the relative price deviation is computed as:

∆pi,j,t+n =
pji,t+n − pRi,t+n

pRi,t+n

.

The balancer transactions execute arbitrage trades, if an arbitrage opportunity is detected, then -
|∆pi,j,t+n| > ϵ, where ϵ ∈ R+ is a threshold, using either flash loans1, or network-owned liquidity.

1A flash loan is an uncollateralised, atomic loan that must be repaid within the same blockchain transaction. If repayment
fails, the transaction reverts, ensuring no outstanding debt or risk to the lender.

3

• (Step 4) Transaction Set Discovery: At the beginning of each execution window (an epoch), which
is comprised of multiple blocks, an execution-priority ordered set of transactions T = {T1, T2, . . . , Tk} is
discovered, with the intention of seeking to restore any mispricing which may have emerged (between ref-
erence and other markets after execution of user initiated transactions) in the block-production process.
This is achieved with the help of searchers, who essentially run a balancing function, of the form:

Ts,e = Os(E[Se],E[re], c),

where Se is a matrix representing the set of cleared states after user transactions across blocks in e-th
epoch; re is the set of available block capacity in each epoch; c encapsulates conditions defined by gov-
ernance (e.g., designated lending markets for flash loans or reference price sources); and Os represents
the searcher-specific function generating the optimal transaction set.

At each epoch, the set of balancer transactions (Te) adjusts to market conditions and system states.
The system incentivises searchers to propose optimal sets, which are evaluated via decentralised gover-
nance, to determine the applicable balancer transaction set in the next epoch. Selection criteria may
include additional information submitted by searchers, for e.g.,

1. Profit Estimate: Expected arbitrageable value, i.e., E[Π(Ts)] ∈ R+.

2. Gas Fee Estimate: Expected gas cost for executing the arbitrage, i.e., E[G(Ts)] ∈ R+.

3. Simulation: An execution simulation using data from atleast the past few blocks, accounting for
price impact, slippage, and historical inclusion rates (if available) to ensure economic viability and
feasibility, under real network conditions.

4. Searcher Credibility: Auto-balancer can assess searcher credibility over time via governance
mechanisms to refine selection and decision-making.

In essence, searchers determine the order of transactions based on their ordering function, considering
an individual transactions Tk financial output calculated as E[Π(Tk)]−E[G(Tk)], where E[Π(Tk)] is the
expected arbitrage profit from transaction Tk; and E[G(Tk)] is their expected gas cost for transaction
Tk. And quite notably, the host blockchain network does not take any additional inventory risk in the
entire process.

3.1 Reward Distribution

If Π(Te) ∈ R+ represents the total arbitrage profit pool available for distribution among searchers (S), mar-
ketplaces operating on the host blockchain network (L), and the network’s treasury (N), then each group
receives: Fx = ωx ·Π(Te), x ∈ {S,L,N}, where the allocation weights ωx are dynamically adjusted based
on network conditions and satisfy:

∑
x∈{S,L,N} ωx = 1.

The contribution of each marketplace l ∈ L to the arbitrage profit pool is captured by a function ρ(l),
which quantifies the share of arbitrageable value facilitated by that marketplace. The marketplace-specific
allocation can then be expressed as:

Fl = ωL ·Π(Te) ·
ρ(l)∑

l′∈L ρ(l
′)
, l ∈ L,

ensuring that each marketplace’s reward is proportional to its relative contribution to the overall arbitrage
opportunity.

For block producers, while a comprehensive incentive design for node operators is beyond the scope of this
work, we will propose a mechanism to encourage fair execution of balancer transactions. Therein, block
producers receive a fraction γ ∈ (0, 1) of the gas fees submitted with balancer transactions, ensuring they
have a direct economic incentive to include them in blocks. On the other hand, to discourage manipulation,
a slashing penalty is enforced if block producers fail to honour the prescribed execution order of balancer
transactions.

References

[1] Arman Abgaryan and Utkarsh Sharma. Dynamic function market maker. arXiv preprint arXiv:2307.13624,
2023.

4

