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Abstract

Oracle networks feeding off-chain information to a blockchain are required to solve a distributed
agreement problem since these networks receive information from multiple sources and at different times.
We make a key observation that in most cases, values obtained by oracle network nodes from multiple
information sources are in close proximity. We define a notion of agreement distance and leverage the
availability of a state machine replication (SMR) service to solve this distributed agreement problem with
an honest simple majority of nodes instead of the conventional requirement of an honest super majority
of nodes. Values from multiple nodes being in close proximity forming a coherent cluster, is one of the
keys to its efficiency. Our asynchronous protocol also embeds a fallback mechanism if the coherent cluster
formation fails. Through simulations using real-world exchange data from seven prominent exchanges,
we show that even for very small agreement distance values, the protocol would be able to form coherent
clusters and therefore, can safely tolerate up to 1

2
of Byzantine nodes. We also show that, for a small

statistical error, it is possible to choose the size of the oracle network to be significantly smaller than the
entire system that tolerates up to a 1

3
fraction of Byzantine failures. This allows the oracle network to

operate much more efficiently and horizontally scale much further.

1 Introduction

Connecting existing Web 2.0 data sources to blockchains is crucial for next-generation blockchain applications
such as decentralized finance (DeFi). An oracle network [4, 28] consisting of a set of interconnected and
independent nodes aims to address this issue by allowing smart contracts to function over inputs obtained
from existing Web 2.0 data, real-world sensors, and computation interfaces.

Performing this information exchange securely, however, is not a trivial matter. First, only a few data
sources may be available to pick from, some of them may crash (due to a Denial of Service (DOS) attack
or system failures), or even send incorrect information (due to a system compromise or some economic
incentives) [10, 16]. Second, as most of the data sources today do not offer data in a signed form, an oracle
network also becomes vulnerable due to the compromise of a subset of oracle network nodes, a subset of
data sources, or due to the compromise of a combination of the two. Third, an adversary may go after the
availability of the system (and at times safety) by malevolently slowing down the protocols. We address
these issues and propose a robust and scalable distributed solution for solving the oracle problem. Our
approach can withstand extreme adversarial settings. We make some real-world synchrony and input-data
distribution observations, and introduce oracle execution sharding. This makes our solution scale extremely
well as the number of oracle services and the size of our oracle network grows.

One of the key objectives of an oracle service is to take a piece of off-chain information and bring it to the
on-chain world. Therefore, any such service must have three components, (i) sources of information, which we
shall refer to as data sources, (ii) a network of nodes, and (iii) a target component in an on-chain environment
(i.e., a smart contract). To maintain fault tolerance capabilities as well as the decentralized nature of the
service, it is necessary to have multiple data sources in addition to having a network of multiple nodes. The
oracle agreement problem focuses on producing a unique value that is representative of the values emanating
from the honest data sources that are feeding information to the oracle network. We need a protocol for
ensuring that all the honest oracle nodes have the same output that is representative of all the honest data
sources. Notice that this is non-trivial as all the honest nodes may still have different outputs since they may
be listening to different sets of data sources at slightly different times. We call this problem a Distributed
Oracle Agreement (DORA) problem. DORA shares the same termination and agreement properties with the

1



Figure 1: ABC protocol: Network of oracle nodes obtaining data from data sources, running a Byzantine
agreement protocol and then broadcasting the agreed upon value to the world via SMR/Blockchain

well-studied Byzantine agreement (BA) problem [22, 24]. However, the crucial validity property for DORA
is significantly more generic. BA demands that the output be the same as an honest node’s input if all the
honest nodes have the same input. DORA is a generalization of this, where the output will be a value within
a range (convex hull) defined by the minimum and maximum honest inputs. As DORA generalizes the
BA problem, it requires the standard 67% honest majority among the participating nodes. As the system
scales and the number of participating nodes increases, solutions to DORA may not scale, especially when
we collect many different kinds of variables. For a full-fledged blockchain system, we expect the number of
variables for which representative values are to be computed to be in the order of several hundred.

Let us first understand how a traditional oracle protocol, denoted as ABC protocol, works. An oracle
network consisting of multiple nodes obtains different values from multiple sources of information as shown
in Figure 1 and agrees on a single report/output. As we discuss in Section 3.2, this problem is closely related
to the standard Byzantine agreement problem [30]. In presence of Byzantine nodes and non-synchronous
communication links, the oracle network has to have at least 3f + 1 nodes, where f is the upper-bound on
the number of nodes that can turn Byzantine during the agreement protocol [19]. These oracle nodes run a
Byzantine agreement protocol in order to agree on a subset of 2f + 1 values. In ABC, one of the nodes is
designated as a leader which would send this agreed-upon subset to the Blockchain. If the leader happens
to be Byzantine, after a certain timeout period, the ABC protocol initiates a leader change.

A crucial point to note is that in ABC, the SMR/Blockchain is used merely as a means to broad-
cast/publish the agreed-upon set to the world. Even without the SMR/Blockchain, ABC protocol ensures
that all the honest nodes of the oracle network agree upon the same subset of 2f + 1 values. In a network
with f Byzantine nodes, 2f + 1 values are required to ensure that statistical aggregation via computing the
median does not deviate too much from the values received from honest nodes. Essentially, 2f + 1 values
ensure that the median is upper-bounded and lower-bounded by values from the honest nodes.

Blockchain ensures that the messages on the chain have a total order. Further, it also ensures that any
entity observing the state of a Blockchain would witness the same total order. Not utilizing the ability of a
Blockchain to act as an ordering service is a missed opportunity by oracle networks in general.

1.1 Our Approach

We leverage the ordering capabilities of the Blockchain by presenting a protocol that both sends and receives
information from the Blockchain to accomplish the goal of publishing a value on the Blockchain that is
representative of the values from all the honest data sources. Towards computing a representative value,
we redefine the notion of agreement. We say that two nodes agree with each other if the values that they
obtained from data sources are within a pre-defined parameter called agreement distance. We say that a
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Figure 2: The oracle nodes collect information from various data sources. The oracle nodes exchange
information with the aggregators to vote for the proposal of a coherent cluster of size f +1. The aggregators
post these clusters to Blockchain and all oracle nodes consider the first cluster to be authoritative.

set of values form a coherent cluster if all the values in that set are at most agreement distance away from
one another. The oracle network now merely needs to agree on a coherent cluster of size f + 1. Since there
would be at least one honest value in any such coherent cluster, any statistical aggregator such as the mean
or the median would be at most agreement distance away from an honest value, thus ensuring that the final
agreed upon value does not deviate too much from the honest values.

The way our protocol achieves agreement on a coherent cluster of size f + 1 is that the first such cluster
posted on the Blockchain would be considered authoritative for a given round of consensus.

Similar to ABC protocol, we also have designated nodes that we call aggregators. These aggregators
would gather f + 1 signatures on a proposed set of f + 1 values provided by the nodes and then post it
on the SMR/Blockchain. To circumvent the problem of having a Byzantine aggregator, we sample a set of
aggregators, henceforth called a family of aggregators, from the entire oracle network such that there is at
least one honest aggregator. This helps us avoid having to initiate any aggregator change protocol. So now,
we have multiple aggregators posting sets of size f + 1 to the Blockchain, but only the first one would be
accepted as authoritative by the oracle network. Note that all such coherent clusters of size f + 1 contain
values that are at most agreement distance away from some honest value.

With the redefined notion of agreement and utilizing the ordering capability of the Blockchain, we reduce
the number of oracle nodes required to 2f + 1 instead of the usual requirement of 3f + 1. Figure 2 shows
how information flows across various components of our oracle protocol. Note that now the oracle nodes only
have to communicate back and forth with the family of aggregators. All the oracle nodes and aggregators
observe the total order in which information appears on the SMR/Blockchain. Aggregators are the only
nodes that sends information to the Blockchain.

Under unusual circumstances, such as when none of the aggregators is able to form a coherent cluster,
our protocol switches to a fallback mechanism. In this fallback mechanism, the requirement of total nodes
again increases to 3f +1 out of which the aggregators wait for 2f +1 nodes to provide a value and compute
a median. In this fallback mechanism, the arithmetic mean can not be used anymore since the values
introduced by the Byzantine nodes in this set of size 2f + 1 could be unbounded. Therefore, our fallback
mechanism, along the same lines as ABC, computes a median from the agreed upon set of size 2f + 1.

Our idea of the reduced requirement for the number of nodes hinges upon the honest nodes producing
values in close proximity most of the time. To prove that this assumption is practical and well-founded, we
take BTC price information from 7 exchanges that include FTX, and run a simulation of our protocol on this
data covering a 30 day period that includes the turbulent period of FTX collapse [1]. We run simulations
where the round of agreement happens every 30 and 60 seconds. These simulations corroborate our close
proximity of honest values assumption. We observe that for agreement distances as low as $25 and $53,
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when the average BTC price is around $19605, a coherent cluster can be formed in 93% and 99% rounds of
agreement respectively.

To further scale our solution, we introduce execution sharding by sampling multiple sub-committees from
the 3f +1 nodes available in the entire system. The size and the number of such sub-committees are chosen
such that each sub-committee has an honest simple majority with a very high probability. Since under
normal circumstances we only need an honest simple majority, we equally divide the responsibilities to track
multiple variables and bring their price information on-chain equally among these sub-committees. Since
a sub-committee can now only provide a probabilistic safety guarantee, we analyze it in Section 4.2 and
establish that with a few hundred nodes, the safety guarantee holds with a very high probability.

The rest of the paper is organized as follows. Section 2 introduces notations used in the paper. We describe
our protocol in Section 3. We provide details of empirical analysis and safety analysis for probabilistic safety
in Section 4. We provide details on some extensions in Section 5. Section 6 discusses some relevant aspects
of the architecture and the design of our oracle.

2 Preliminaries

In this section, we introduce some preliminaries and notations to which we will refer for the remainder of
this paper.

2.1 Oracle Network

Let |S| denote the cardinality of a set S. We shall use Q0.5(X) to denote the median of a set X of values.
Our oracle network consists of a set Nt of |Nt| nodes, which we also call a tribe. Among these, at most

ft <
|Nt|
3 nodes may become compromised, that is to turn Byzantine, thus, deviating from an agreed-upon

protocol and behaving in an arbitrary fashion. A node is honest if it is never Byzantine. We assume a static
adversary that corrupts its nodes before the protocol begins.

From these Nt nodes, towards developing scalable solution, we also uniformly randomly draw sub-

committees, henceforth called clans. Each clan Nc of size |Nc| are drawn such that at most fc < |Nc|
2

nodes are Byzantine in a clan. The clan nodes are sampled uniformly at random from the tribe, and we

ensure that the probability of any clan having more than ⌊ |Nc|
2 ⌋ Byzantine nodes is negligible. Probability

analysis for such sampling is provided in Section 4.2.
All oracle nodes are connected by pair-wise authenticated point-to-point links. We assume this communi-

cation infrastructure to be asynchronous such that the (network) adversary can arbitrarily delay and reorder
messages between two honest parties. As typical for all asynchronous systems, for the system’s liveness
properties, we assume that the adversary cannot drop messages between two honest parties.

We initialize the protocol with a unique identifier to prevent replay attacks across concurrent protocol
instances, but do not explicitly mention this in the text.

A signed message m from a node pi are denoted by m(·)i. Similar to the most recent SMR/blockchain
designs, we assume a (n, n−f) threshold BLS [5,7] signature setup. We denote an n−f threshold signature on
the message m as a quorum certificate QCm. While the use of threshold signatures offers a simple abstraction
and can be verified on Ethereum, we can also employ a multi-signature (multisig) setup as allowed by the
employed blockchain.

2.2 Oracle Data Sources

A data source is responsible for providing the correct value of a variable τ , which could be, say, the price of
Bitcoin in US Dollars. Let DS denote a set of data sources and BDS ⊂ DS denote the subset of these data
sources which could be Byzantine. We say that a data source is Byzantine if : (i) it lies about the value of
the variable, or (ii) if it is non-responsive. Otherwise, we will consider the data source to be honest. We
assume that |BDS| ≤ fd, where fd is the upper bound on the number of Byzantine data sources.

The goal of the tribe is to reach a consensus in a distributed fashion about a representative value, denoted
as S, of a particular τ . The notion of a representative value depends on the underlying τ . For example, we
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can say that the representative value of a particular stock could be considered to be a mean of the values of
the stock at various stock exchanges.

In this paper, for now, we assume that for the variable τ of interest, the arithmetic mean µ of values of
τ from various data sources is the representative value.

An observation of a node pi from a data-source dsj of a variable τ is denoted as o(pi, dsj , τ). We say that
an observation o(pi, dsj , τ) is an honest observation if both pi and dsj are honest. In an ideal world without
any Byzantine nodes or Byzantine data sources, we would like the protocol to have the following property:

Property 1 (Ideal Representative Value). S =

∑
dsj∈DS o(pi,dsj ,τ)

|DS|
where pi refers to any one of the honest nodes.

When the context is clear, we will just use o to denote an observation. Let O denote the set of all
observations. We will use Opi to denote the observations made by node pi. H(O) and B(O) denote the set of
honest observations and Byzantine observations respectively. Let Hmin(Opi) = minH(Opi

) and Hmax(Opi) =
maxH(Opi

) indicate the minimum and maximum values from a given set of honest observations H(Opi
).

We will just use Hmin and Hmax to refer to the minimum and the maximum values amongst all honest
observations H(O).

We say that two observations o1 and o2 agree with each other if ∥o1 − o2∥1 ≤ d. That is if the L1

distance between them is at most d, where d is a pre-defined parameter known as agreement distance. A set
of observations CC ⊆ O is said to form a coherent cluster if ∀o1,o2∈CC : ∥o1 − o2∥1 ≤ d.

We will use the terms majority and super majority to denote that some entity has a quantity strictly
greater than 1

2 and 2
3 fraction of the total population respectively. For example, an honest majority within

a set of nodes would indicate that more than half of the nodes are honest. An honest super-majority would
indicate the fraction of honest nodes to be strictly greater than 2

3 of all the nodes within the set.
Let Sr denote the value for which the oracle network achieved a consensus for it to be considered as the

representative value for a round r. We will use Sr−1 to denote the value emitted by the oracle network in
the previous round.

2.2.1 Expected Representative Value with Byzantine Actors

We consider two kinds of bad actors in the system: (i) Byzantine data sources, and (ii) Byzantine nodes.
We assume that Byzantine nodes and Byzantine data sources can collude in order to (i) prevent the oracle
network from reaching a consensus in a given round, or (ii) prevent the oracle network from achieving
Property 1.

In the presence of such Byzantine actors, even if a single dishonest observation gets considered for
computation of the mean, the Byzantine nodes can be successful in forcing S to deviate arbitrarily from
the true representative value equivalent to a mean1. Moreover, for the setting with |Nt| ≥ 3ft + 1 nodes, a
rushing adversary can suggest its input only after observing the honest parties’ inputs. Therefore, we can
only aim for the following weaker property:

Property 2 (Honest Bounded Value). Hmin ≤ S ≤ Hmax

As discussed in the literature [25], the agreed value is in the convex hull of the non-faulty nodes’ inputs.

2.3 Primitive: State Machine Replication

In the form of state machine replication (SMR) [33] or blockchain, we employ a key distributed service for
our system. An SMR service employs a set of replicas/nodes collectively running a deterministic service
that implements an abstraction of a single, honest server, even when a subset of the servers turns Byzantine.
In particular, an SMR protocol orders messages/transactions tx from clients (in our case aggregators) into
a totally ordered log that continues to grow. We expect the SMR service to provide public verifiability.
Namely, there is a predefined Boolean function Verify; a replica or a client outputs a log of transactions log
= [tx0, tx1, . . . , txj ] if and only if there is a publicly verifiable proof π such that Verify(log, π) = 1.

Formally, an SMR protocol [26] then provides the following safety and liveness:

1Byzantine oracle nodes are problematic particularly as data sources do not sign their inputs.
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Property 3 (Safety). If [tx0, tx1, . . . , txj ] and [tx′
0, tx

′
1, . . . , tx

′
j′ ] are output by two honest replicas or clients,

then txi = tx′
i for all i ≤ min(j, j′).

Property 4 (Liveness). If a transaction tx is input to at least one honest replica, then every honest replica
eventually outputs a log containing tx.

We assume that there is an SMR/blockchain service running in the background that an oracle service can
employ. Oracle network nodes are assumed to employ a simple put/get interface to the SMR service. They
employ postSMR(·) to post some (threshold) signed information (or transaction) on the SMR chain. Upon
collecting and processing ordered transactions on SMR, the nodes employ “Upon witnessing” event handling
to process the relevant messages. As communication links between oracle nodes and SMR service nodes are
expected to be asynchronous, this put/get interface is expected to function completely asynchronously and
provide guarantees that can be observed as an interpretation of SMR safety and liveness: (i) senders’ messages
appear on the blockchain eventually; (ii) different receivers observe messages at different points in time; (iii)
however, all the nodes eventually observe messages in the exact same total order.

Unlike a few recent efforts (such as [14,23]) that treat blockchain as a (bounded-synchronous) broadcast
channel with bounded-message delivery time, we find our weaker asynchronous primitive to be a better
representative of modern blockchains. In other words, the broadcast channel assumption puts a strict time
bound on message delivery via the blockchain. It is difficult though to offer such a precise bounded time
mechanism for an honest transaction to appear on a blockchain in the presence of network asynchrony over
the Internet, transaction reordering, and frontrunning.

3 The Supra Oracle Protocol

3.1 Data Feed Collection

The first step of an oracle service involves oracle nodes connecting with the data sources. As we assume that
there are multiple data sources, some of them can be compromised and most of them do not sign their data
feeds. Our key goal is to ensure that the honest (oracle) node’s input to aggregators is representative of the
honest data sources.

Towards ensuring the correctness of the honest nodes’ inputs, we expect them to retrieve feeds from
multiple data sources such that the median of the received values is representative of the honest values. In
another words, it is inside the [Hmin,Hmax] range of the honest data sources.

In this direction, we make a key synchrony assumption about communication links between data sources
and oracle nodes. Unlike communication links between oracles nodes, we assume that links connecting data
sources and oracle nodes to be bounded-synchronous such that if a node does not receive any value from the
data source over the web API/socket in a time-bound Tds, the node can assume that the source has become
faulty/Byzantine.

In this bounded-synchronous communication setting, data feed collection works as shown in Algorithm 1.

1. We expect that up to fd data sources may become Byzantine.

Therefore, out of abundant caution, we mandate that every oracle node connects to 2fd+1 data sources
2.

2. Every node sends a request to their assigned set of data sources ADS and then starts the timer Tds.
(Lines 1 to 4)

3. Whenever a value v is received from a data source ds, the node stores in obs[ds] . (Line 7)

4. Upon timeout of Tds gather all the values received so far in Obs. (Line 10)

Theorem 1 (Validity). At the end of Algorithm 1, Hmin(Obs) ≤ Q0.5(Obs) ≤ Hmax(Obs).

2Our bounded-synchrony assumption for the source-to-node link is for simplicity. If these links behave more asynchronously,
we can easily make the node contact 3fd + 1 data sources and wait to hear back from at least 2fd + 1 data sources to ensure
that the honest nodes select a representative value.
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Proof. We will prove the theorem by contradiction. Without the loss of generality, let us assume that
Q0.5(Obs) > Hmax(Obs). The total number of all the honest values received by a node is at least fd+1 and the
total number of all the Byzantine data sources is at most fd (B(Obs) ≤ fd). Since all the honest data sources
would report the correct value within Tds, we would have fd+1 ≤ |Obs|. Since Q0.5(Obs) > Hmax(Obs) and
|H(Obs)| ≥ fd + 1, it must be the case that |B(Obs)| ≥ (fd + 1), a contradiction. One can similarly argue
that Q0.5(Obs) < Hmin(Obs) is not possible.

Algorithm 1 GetDataFeed(ADS)

Require: (ADS ⊆ DS) ∧ (|ADS| = 2fd + 1)
1: Upon init do
2: ∀ds∈ADSobs[ds]← ⊥
3: send the request to all ds ∈ ADS
4: start the timer Tds

5:

6: Upon receiving value v from ds and Tds > 0 do
7: obs[ds]← v
8:

9: Upon timeout of Tds do
10: return Obs = {obs[ds]|obs[ds] ̸= ⊥}
11:

3.2 Distributed Oracle Problem Definition

Once we ensure that every honest oracle node has produced a correct/representative value as its input,
the oracle problem becomes a bit simpler. Since honest observations may still differ, therefore, we need
to make sure that the honest nodes agree on exactly the same value, which is again representative of the
honest nodes’ inputs. We observe that this problem is related to the Byzantine agreement (BA) [19] and
Approximate agreement [17, 25] problems from the literature on distributed systems. While the expected
agreement and termination properties are exactly the same as for BA, the validity property coincides with
the typical Approximate agreement definition. We call this problem a distributed oracle agreement (DORA)
problem.

Definition 1 (Distributed Oracle Agreement— DORA). A distributed oracle agreement (DORA) protocol
among n nodes {p1, p2, . . . , pn} with each node having input vi guarantees the following properties:

Property 5 (Termination). All honest nodes eventually decide on some value.

Property 6 (Agreement). The output value S for all honest nodes is the same.

Property 7 ((Min-max) Validity). The output value is in the convex hull of the honest nodes’ inputs. For
scalar inputs, this coincides with Property 2: Hmin ≤ S ≤ Hmax

Similar to the BA problem, it is easy to observe that DORA also requires an honest super majority. It
is however interesting to observe that this bound persists even when the oracle nodes have access to the
SMR/blockchain service defined in Section 2.3. Unlike a typical broadcast channel, this SMR channel is
asynchronous to different receiving nodes. Therefore, it is not possible to differentiate between slow nodes
and crashed nodes. The protocol needs to make progress with only n− f inputs, where f out of n nodes are
Byzantine. Access to the SMR service is still helpful as it already overcomes the FLP impossibility [22]. We
can develop protocols for BA and DORA in a purely asynchronous manner without requiring any distributed
randomness (such as common coins) [12].

The requirement of an honest super-majority for DORA can be a scalability issue as the number of oracle
nodes increases. For optimistic scenarios, we overcome this issue by making a practical assumption on the
input values. In particular, if we assume that inputs from all honest nodes form a coherent cluster within a
reasonably small agreement distance d, then we can solve DORA requiring only an honest majority instead
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of an honest super majority. We call this new problem DORA-CC which may offer a slightly weaker validity
property stated below:

Definition 2 (Distributed Oracle Agreement with Coherent Cluster (DORA-CC)). A DORA-CC protocol
among n nodes {p1, p2, . . . , pn} with each node having input vi such that these input values form a coherent
cluster for a distance d, guarantees the following property in addition to Termination(Property 5) and
Agreement(Property 6) properties.

Property 8 (Approximate (Min-max) Validity.). The output S is within the interval [Hmin− d,Hmax + d].

3.3 DORA with Coherent Cluster Protocol

DORA-CC only needs an honest majority, while we expect the tribe to offer honest nodes with a superma-
jority. In an optimistic scenario, this allows us to only employ a subset of nodes within the tribe. We divide
the tribe Nt into multiple mutually exclusive clans of size |Nc|, where Nc denotes the set of nodes belonging
to a clan c. While the number of Byzantine nodes within Nt is restricted to ft, we choose |Nc| such that

the number of Byzantine nodes are at most fc =
|Nc|−1

2 with a very high probability. Each such clan of size
|Nc| can be given the responsibility to emit S-values for different variables. For simplicity, we only focus on
a single variable τ in this paper. The process, however, can be replicated for multiple variables.

There could be times when the inputs from all honest nodes may not form a coherent cluster within
the distance d. For such a scenario, we aim at first identifying this volatility in a distributed fashion and
then securely switching to the fallback protocol for the DORA instance over the entire tribe. Now, when
we run the DORA instance over the entire tribe, we ensure that the output satisfies Definition 1 and is
representative of the existing market conditions.

Additionally, we also uniformly randomly select a family A of nodes from the tribe such that at least one
of them is honest with a high probability. These nodes are designated as aggregators as they are supposed
to securely collect information from the clan nodes and post it on the SMR. Note that these aggregators are
employed solely to reduce the total number of interactions with the blockchain. Since the nodes sign their
inputs, there are no safety issues regarding a Byzantine aggregator forging them. If there is only a single
aggregator, there is almost 1

3 probability of it being Byzantine, which may require an aggregator change
to ensure the progress of the protocol. Our multi-aggregator model ensures progress without requiring any
aggregator changes, thus reducing latency. However, this comes with added communication complexity.

Pseudocode for DORA-CC in the presence of volatile data feeds is given in Algorithm 2. It proceeds as
follows:

1. Using Algorithm 1, every node would gather data from 2fd + 1 uniformly randomly assigned data
sources, compute the median from all the values received and send the median to all the aggregators
as a VALUE message. Each node starts a timer with Tfallback (Line 6) .

2. An aggregator waits until a coherent cluster of size fc + 1 is formed. Once the cluster is formed, it
computes the mean (Line 12). The aggregator then sends the set of VALUE messages that formed a
cluster along with the mean as a VPROP message to all the clan nodes (Line 13). This message would
convey that the aggregator proposes the µ to be the Sr.

3. Upon receiving a proposal VPROP with CC and µ from an aggregator, the node performs a validation.
The node would validate that (i) CC contains signed messages from the nodes of the clan, (ii) the
values in CC forms a coherent cluster within d, and (iii) that µ is indeed the arithmetic mean of
the values in CC. If the validation is successful, it sends its signed vote VOTEVP(CC, µ, r) to the
aggregator (Lines 15 to 16).

4. In an optimistic scenario, the aggregator would receive fc +1 votes of the kind VOTEVP(CC, µ, r) ap-
proving the proposal to allow it to form a quorum, prepare quorum certificateQC and post VPOST(CC, µ, r,QC)
on the SMR (Line 20). The nodes in turn would witness VPOST(CC, µ, r,QC) on the SMR, agree on
µ as Sr and conclude the current round (Line 22).

5. In an unusual scenario, a coherent cluster of size fc + 1 can not be formed by any of the aggregators.
This could happen either due to extreme volatility during data feed, or due to network asynchrony
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Algorithm 2 ComputeS (pi, Nc,A, r)
1: input: r is the round identifier, Nc is the set if nodes in the clan, A is the set of aggregators, pi is the ID of this

node
2: Upon init do
3: ADS ← 2fd + 1 uniformly randomly assigned data-sources from DS
4: Opi ← GetDataFeed(ADS)
5: send VALUE(Q0.5(Opi), r)i to all nodes in A
6: start timer Tfallback

7: if pi ∈ A then ∀pj∈Ncobs[pj ]← ⊥
8:

9: Upon receiving VALUE(v, r)j from a node pj and pi ∈ A do
10: obs[pj ]← v
11: if ∃CC⊆obs|CC| ≥ fc + 1 then
12: µ← mean(CC)
13: send VPROP(CC, µ, r)i to all nodes in Nc

14:

15: Upon receiving VPROP(CC, µ, r)j from pj ∈ A do
16: if V alidate(VPROP(CC, µ, r)j) = true then send VOTEVP(CC, µ, r)i to pj

17:

18: Upon receiving VOTEVP(CC, µ, r)j from pj and pi ∈ A do
19: if QC is formed on VOTEVP(CC, µ, r) then ▷ Quorum with fc + 1 votes
20: postSMR(VPOST(CC, µ, r,QC))
21:

22: Upon witnessing the first VPOST(CC, µ, r,QC) on SMR do
23: Sr ← µ
24: return
25:

26: Upon timeout on Tfallback do
27: send VOTEFT(fallback, r)i to all nodes in A
28:

29: Upon receiving VOTEFT(fallback, r)j from pj ∈ Nc and pi ∈ A do
30: if QC is formed on VOTEFT(fallback, r) and Tfallback for pi has already timed out then
31: postSMR(FTPOST(fallback, r,QC))
32:

33: Upon witnessing FTPOST(fallback, r,QC) on SMR do
34: switch to Fallback protocol
35:
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Figure 3: Visualization of DORA protocol

and high network delays. In such a case, the nodes would timeout on Tfallback and vote for fallback
VOTEFT to all the aggregators (Line 27). This can happen due to high volatility during the data feed
window Tds when the honest observations can not form a coherent cluster of size fc + 1. In that case,
the aggregators may receive fallback votes VOTEFT from multiple nodes (Line 29). If an aggregator
has gathered enough votes for the fallback, it posts the fallback proposal with a quorum certificate on
SMR (Line 31).

6. A node witnessing a fallback message FTPOST (due to timeout of Tfallback) on SMR would switch to
the fallback protocol mentioned in Algorithm 3.

Theorem 2 (Approximate Validity). The protocol defined in Algorithm 2 if it posts VPOST(CC, µ, r,QC)
on SMR then µ must be within the interval [Hmin − d,Hmax + d].

Proof. There is at least one honest observation within the fc + 1 observations belonging to the cluster CC.
By definition of a coherent cluster, all other fc observations, even if reported by Byzantine nodes, have to
agree with the honest observation mentioned earlier to form the cluster CC. Therefore, no observation can
exceed Hmax + d. Similarly, one can argue that no observation can be less than Hmin − d. Therefore, the
mean µ computed by an aggregator must lie within the interval [Hmin − d,Hmax + d].

10



Algorithm 3 FallbackS (pi, r,Nt,A)
1: input: pi is the unique id of this node, r is the round identifier, Nt is the set of nodes in the tribe, A is

the set of aggregators
2: Upon init do
3: ADS ← 2fd + 1 uniformly randomly assigned data-sources from DS
4: Opi ← GetDataFeed(ADS)
5: send VALUE(Q0.5(Opi), r)i to all the aggregators (nodes in A)
6: if pi ∈ A then
7: ∀pj∈Nc

obs[pj ]← ⊥
8:

9: Upon receiving VALUE(v, r)j from pj and pi ∈ A do
10: obs[pj ]← v
11: O ← {obs[pj ]|pj ∈ Nt ∧ obs[pj ] ̸= ⊥}
12: if |O| ≥ 2ft + 1 then
13: send VPROP(O,Q0.5(O), r)i to all nodes in Nt

14:

15: Upon receiving VPROP(O, v, r)j and pj ∈ A do
16: if V alidate(VPROP(O, v, r)j) = true then
17: send signed vote VOTEVP(O, v, r)i to pj

18:

19: Upon receiving VOTEVP(O,Q0.5(O), r)j from pj in Nt and pi ∈ A do
20: if QC is formed on VOTEVP(O,Q0.5(O), r) then ▷ Quorum with 2ft + 1 votes
21: postSMR(VPOST(O,Q0.5(O), r,QC))
22:

23: Upon witnessing the first VPOST(O, v, r,QC) on SMR do
24: Sr ← v
25: return
26:
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The fallback protocol where the entire tribe Nt participates is shown in Algorithm 3. Note that we

assume that at most ft ≤ |Nt|−1
3 many nodes in the tribe may exhibit Byzantine behaviour.

1. All the nodes gather observations from their assigned data sources and then send corresponding medians
to the aggregators (Lines 2 to 7). Note that even the clan nodes that triggered the fallback gather
fresh data along with the rest of the tribe.

2. When an aggregator receives a VALUE from a node, it checks whether it has received inputs from
2ft + 1 nodes (Line 12). Since at most ft out of total |Nt| = 3ft + 1 nodes may be Byzantine, by
gathering inputs from 2ft + 1 votes, the aggregator is assured that within this set of inputs, there is
an honest majority. From these inputs, it calculates its median and sends VPROP(O,Q0.5(O), r) to all
the nodes in the tribe Nt for Q0.5(O) to be considered as Sr for the current round r (Line 13).

3. A node receiving a proposal VPROP(O, v, r) from an aggregator validates that (i) observations in O are
signed by nodes in Nt, (ii) the value v is indeed the median of O, and (iii) the message is indeed from
an aggregator in A (Line 16). It sends back its vote VOTEVP(O,Q0.5(O), r) to the same aggregator
(Line 17).

4. An aggregator, upon receiving 2ft+1 votes, prepares the quorum certificateQC and posts VPOST(O,Q0.5(O), r,QC)
on SMR (Line 21).

5. The nodes conclude round r after reaching consensus on v as Sr when they witness VPOST(O, v, r,QC)
on SMR (Line 24).

It is evident from Theorem 1 that the Sr reported by the fallback protocol will always be inside the
interval [Hmin,Hmax]. Due to multiple aggregators, it is possible that an FTPOST is posted on SMR, but
a VPOST by another aggregator emerging from Algorithm 2 is delayed in reaching the SMR. In this case,
the nodes would switch to the fallback protocol and then witness the delayed VPOST message. In that case,
the S would be within [Hmin − d,Hmax + d] as defined in Property 8. The nodes would only consume the
S from the first VPOST message on SMR for any given round.

Theorem 3 (Fallback Termination). Algorithm 3 eventually terminates for all honest nodes if (i) Nt has
an honest super majority and (ii) A has at least one honest aggregator.

Proof. GetDataFeed() terminates within Tds as per the design. All 2ft + 1 honest nodes would send their
corresponding median values to all the aggregators. Since there is at least one honest aggregator, it would
eventually receive values from 2ft+1 nodes. It is possible that in the subset O considered by the aggregator,
there are some Byzantine observations. However, the aggregator would send VPROP(O,Q0.5(O), r) to all
the nodes in Nt. An honest node can validate the aggregator’s proposal, even if its own value is not in O.
Therefore, an honest aggregator would eventually receive 2ft+1 votes on its proposal. This would be posted
on SMR by the aggregator, ensuring at least one valid proposal on SMR. Therefore, all the honest nodes
would eventually witness some valid VPOST(O, v, r,QC) on SMR and would reach a consensus on Sr to be
v.

Theorem 4 (DORA-CC-Fallback Termination). Algorithm 2 eventually terminates for all honest nodes if
(i) Nc has honest majority, (ii) Nt has honest super majority, and (iii) A has at least one honest aggregator.

Proof. All the honest nodes would finish gathering their data feed within Tds. We will prove the termination
of round r by all the honest nodes.

An honest node would conclude a round and move to the next round only upon witnessing a VPOST(Obs, v, r,QC)
for some set of observations Obs. There are multiple scenarios to be considered here.

1. If at least one of the aggregators is able to form a coherent cluster and post a value via VPOST message
on SMR as the first message for round r, then all the honest nodes would witness it and conclude round
r. (Line 20).
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2. If the first message for round r that appears on SMR is an FTPOST message (Line 33). In this case,
all of the honest nodes would switch to the fallback protocol (Algorithm 3). It is possible that some
other aggregator in A is able to post a value via a VPOST message on SMR after the FTPOST message
mentioned earlier. Even in this case, all the honest nodes would witness this VPOST in Algorithm 3
(Line 23) and conclude round r. If no VPOST is posted on SMR from Algorithm 2 after an FTPOST,
since all the honest nodes would have switched to the fallback protocol, we are guaranteed termination
due to Theorem 3.

Therefore, we need to prove that from Algorithm 2 either VPOST or FTPOST will definitely be posted.

1. If an honest aggregator is able to form a coherence cluster, due to an honest majority in the clan, it
would be able to get fc + 1 votes approving the cluster and its mean and would be able to send a
VPOST to SMR.

2. If no aggregator is able to form a coherent cluster, all the honest nodes would timeout on their Tfallback

eventually. Therefore, there will be fc +1 VOTEFT votes will be sent to all the aggregators eventually
and some honest aggregator would post FTPOST on SMR.

SMR safety (Property 3) ensures that all the nodes eventually observe messages in the exact same total
order. The agreement property (Property 6) follows directly from this SMR safety property. Notice that
for n > 2f with (n, n − f) threshold signature setup, an aggregator may create multiple signed quorums;
however, the SMR safety again helps as the nodes pick the first published quorum.

3.4 Mean v/s Median

In Algorithm 2, we reach an agreement within the agreement distance d with only fc + 1 nodes. Since
it guarantees that there would be at least one honest observation within this set of fc + 1 observations,
we decide to use mean to ensure that all the honest observations are definitely included in the final S
being proposed. Note that while using the median of the coherent cluster would still be within the bounds
[Hmin−d,Hmax+d], a Byzantine majority within the set of fc+1 observation may move the S slightly in the
favor of the adversary. Using the mean allows honest observations to counterbalance byzantine observations,
thereby mitigating a malicious movement of S.

On the other hand, Algorithm 3 uses the median as an aggregation since it offers maximum the robustness
and resilience in the presence of corrupt data due to its breakdown point being 0.5. Since there is no notion
of the observations forming a coherent cluster in Algorithm 3, using the mean would allow an adversary to
move S in its favour arbitrarily and in an unbounded fashion.

3.4.1 Analysis of Communication Complexity

Let us analyze how many messages and bits need to be transmitted by Algorithm 2 and Algorithm 3. We
shall use nc = |Nc| to denote the size of the clan, na = |A| to denote the size of the family of aggregators,
and nt = |Nt| to denote the size of the tribe.

To obtain data from the data sources, we need (2fd+1)nc messages. Nodes would then send nanc VALUE
messages to aggregators. After aggregation, the aggregators would send ncna VPROP messages. The nodes
would generate ncna VOTEVP messages to be sent to aggregators which would subsequently send at most na

messages to the SMR. This would result in the total number of messages being transmitted by Algorithm 2
to (2fd+1)nc+3ncna+na when a coherent cluster is formed. Considering ncna to be the dominating term,
the message complexity would be O(ncna) in the optimistic scenario. Let the total number of variables for
which we need to run DORA be denoted as nτ . If we run DORA for different τ independently, then the
message complexity would increase to O(ncnanτ ). However, one can batch DORA messages for different τ
together in which case the message complexity would again reduce to O(ncna).

In the case when Tfallback times out, the nodes directly send votes to initiate the fallback. This would
require O(ncna) messages at the most. Though each aggregator may try to post FTPOST to SMR, only one
can succeed and the other will be discarded as a duplicate by SMR. Since each aggregator may transmit
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this message, it should be counted, thus, requiring a total of O(na) messages. When the nodes switch to
the fallback protocol, the data feed now requires O((2fd + 1)nt) messages. There would be O(ntna) VALUE
messages by the nodes, O(ntna) VPROP messages by the aggregators and O(ntna) VOTEVP messages by the
nodes. The aggregators would at most transmit O(na) messages to the SMR. Therefore, the total number
of messages in a given round is O(ntna), since nt > nc.

For analyzing complexity in terms of the number of bits transmitted, we need to take into account the
size of each message. Let the length of the data-feed message and VALUE message and hash of any messages
be upper-bounded by k. We assume that within this length we can store all the information needed for the
protocol such as a round identifier, a node identifier, a data-source identifier, a τ value etc. The data feed
stage would require O(k(2fd + 1)nc) bits. Let us assume λ to be the length of a signature. There would be
O((k + λ)ncna) bits required for the nodes to send VALUE messages to aggregators. Since the aggregator
sends back not only the µ but also the set of original VALUE messages forming a coherent cluster, the number
of bits required for VPROP messages would be O(((k+ λ)nc + k+ λ)ncna). The nodes send their votes on a
value proposal, thus requiring O((k+ λ)ncna) bits for VOTEVP messages. We assume that the nodes would
sign the hash of the VPROP message received earlier and return it as an approval. The aggregators then form
a QC and send it to the SMR, which would require O((k+λnc)na) bits of transmission since each QC would
have its size in proportion to nc. Therefore, the communication complexity in bits would be O((k+λ)n2

cna)
for DORA-CC. For nτ many variables it would be O((k + λ)n2

cnanτ ).
In case the fallback happens, the communication complexity in terms of bits would be similar to the

one described above, but now the messages would be transmitted at a tribe level. Thus the number of bits
required for a given round would be O((k + λ)n2

tna) for a single τ and O((k + λ)n2
tnanτ ) for nτ variables.

3.4.2 Error analysis

When the number of Byzantine observations is f and we consider 2f + 1 observations, then we know that
as per Theorem 1 the median value will fall within the bounds defined by Hmin and Hmax. However, this is
not the case when we only consider f + 1 observations. A Byzantine aggregator could find Hmax and insert
fc Byzantine observations with value Hmax + d to form a cluster. It is possible that all the other fc honest
observations have the value Hmin. Had only the honest observations been considered to form a cluster,

the value of µ would have been fcHmin+Hmax

fc+1 but instead, we would end up with µ = Hmax+fc(Hmax+d)
fc+1 .

Therefore, we would have an error upper bound of ∥Hmin −Hmax∥1 + d when Algorithm 2 emits Sr via the
DORA-CC protocol.

In the case of Algorithm 2, it may be possible that ∥Hmin − Hmax∥1 ≤ d does not hold and an honest
aggregator would have proposed a fallback. However, a Byzantine aggregator may be successful in preventing
the fallback by forming a cluster of one honest observation Hmax with fc Byzantine observations with value
Hmax+ d. Had the protocol switched to the fallback protocol, the smallest value of the median produced by
Algorithm 3 would have been Hmin. Therefore, even in this case, the upper bound for the error would be
∥Hmin −Hmax∥1 + d. The arguments with respect to Byzantine observations forming a cluster with Hmin

would be symmetric and do not result in any change in the error upper bound.

Theorem 5 (Lower bound on error upper bound). A protocol for agreeing on a S, where 3ft+1 nodes par-
ticipate out of which ft of these nodes could be Byzantine, and a median of values from non-deterministically
chosen3 2ft + 1 nodes is proposed as the S, would have an error upper bound of at least ∥Hmin −Hmax∥.

Proof. Out of the total 3ft + 1 nodes, ft could be Byzantine. Out of 2ft + 1 honest observations, let 2ft
of them have the value Hmin with one honest observation having the value Hmax. Let all the Byzantine
observations have the value Hmax + c, where c > 0. Out of these 3ft + 1 observations, if the median is
calculated from only 2ft + 1 honest observations, the median would be Hmin. Instead, if the median is
calculated from 2ft + 1 values where ft honest values are Hmin, one honest value is Hmax and all the
Byzantine observations have the value Hmax + c then the median would be Hmax. Therefore, for any such
protocol, the largest possible error can not be less than ∥Hmin −Hmax∥1.

Note that Theorem 5 would hold for any protocol, that computes a median of only 2ft + 1 values out of
the total 3ft + 1 values that may be available.

3The non-determinism choice is introduced due to the non-determinism in network delay
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Figure 4: Tick-start DORA timeline

It is evident from Theorem 5 that Algorithm 2 may increase the error upper bound by only d.

3.4.3 Error compounding

Since it is possible that Byzantine actors may introduce an error of ∥Hmin−Hmax∥1+d, one can wonder if a
Byzantine aggregator across several successive rounds can compound the error. This is not possible because
an Sr is bounded by Hmin and Hmax of honest observations from the round r only. Therefore, the protocols
in Algorithm 2 or Algorithm 3 do not allow the error to be compounded in successive rounds.

3.5 Tick-start DORA

Readers should note that Algorithm 2 and Algorithm 3 do not have any dependence on earlier rounds.
Therefore, the protocol for every round of agreement can be initiated and executed completely independently.

One can therefore envisage a version of DORA protocol, which initiates a round at a regular tick, with the
interval between two consecutive ticks being pre-determined (e.g., 30 seconds or 30 seconds). The underlying
communication is partial-synchronous, so it provides no guarantee that a round r would complete before
round r + 1 starts. The advantage of rounds being independent of one another is that one round does not
have to wait for earlier rounds to finish.

In normal operating conditions, this may result in values of every round being published sequentially
and at somewhat regular intervals. However, due to the vagaries of network delays and abnormal situations,
it is possible that Sr for round r gets published on SMR before the value Sr−x for round r − x, for any
x > 0. Thus, the values on SMR may appear out of order. For any two rounds r1 < r2, Sr2 is likely to be
a fresher value as compared to Sr1 since the data gathering for r1 most likely would have started before the
data gathering for r2. In such cases, consumers of these values may choose to only consume values from
a monotonically increasing subsequence of rounds. For example, as shown in Figure 4 if the sequence of S
being posted on SMR is S1,S3,S2,S5 then a consumer may only consume S1,S3,S5 since using S2 may serve
no practical purpose after having witnessed S3. Note that the values can appear out of order on SMR, since
even after QC is formed on values by the aggregators, one value may be posted faster than the other on the
SMR due to unpredictable delays. If, however, a value from a later round (round 5 as shown in Figure 4)
appears on SMR before QC is formed on a value for a given round (round 4 as shown in Figure 4), then the
ongoing round can be aborted or killed.

Since consuming values from older rounds may not serve any practical purpose, there is merit in termi-
nating an older round if an S-value from a later round is seen on the SMR. For example, for round r if
the coherent cluster can not be formed resulting in a fallback, completion of the round r may take longer
since now the entire tribe has to be engaged to reach an agreement on the value of Sr. Meanwhile, if a
coherent cluster is formed in round r+ 1 and Sr+1 gets posted on the SMR, there is no advantage for nodes
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to continue with round r since a fresh value is already available on the SMR. Therefore in this case, we
change the protocol such that upon witnessing a value Sr from round r on the SMR, all the honest nodes
agree to terminate all the rounds r′ <= r irrespective of whether a quorum certificate for a value for round
r′ has been formed or not.

4 Analysis

4.1 Empirical Analysis of Agreement Distance

We would describe some empirical analysis and simulations of our protocol done on real-world data.
We obtained data for BTC prices in USD from 7 different exchanges, namely, Binance, Coinbase, crypto.com,

FTX, Huobi, OKCoin, and OKEx from 1-Oct-2022 to 10-Nov-2022. We divided this data into two parts. The
first part consists of the data from 1-Oct-2022 to 10-Oct-2022 which was used in determining various values
for d. The second part consists of the data from 11-Oct-2022 to 10-Nov-2022 including the turbulent FTX
collapse period, which was used to simulate the protocol with various values of d.

The data from 1-Oct-2022 to 10-Oct-2022 was divided into (i) 30 second windows, and (ii) 60 second
windows. For each window, the median and the mean were calculated from all the values/observations
available within that window. We observed that the mean of these means and the mean of the corresponding
medians were less than $0.02 away from one another. For 30 second and 60 second windows, the mean of
means was around $19605 and $19606 respectively. Therefore, we used $19605.5 as the representative price
of BTC for the duration of 1-Oct-2022 and 10-Oct-2022.

The simulations were done with d set to various values from 0.02% to 0.55% of $19605.5, the representative
price of BTC calculated as described above.

For simulation, we used 30 and 60 seconds as two different values for Tds. The simulation data from 11-
Oct-2022 and 10-Nov-2022 was divided into (i) 30 second windows, and (ii) 60 second windows. Therefore,
every node obtained its data from data sources within the same window for a given round of oracle agreement.
We assumed that the nodes of the oracle network have clock-drift within a few hundred milliseconds. [20]
We simulated the behavior of 7 nodes, with each node randomly assigned 5 out of the 7 exchanges. Data
from each window was used to simulate one round of agreement.

The availability of data from various exchanges is shown in Table 1. Note that for 4 out of 7 exchanges,
the data availability is below 50% for the simulation duration of 11-Oct-2022 to 10-Nov-2022. This low
availability could perhaps be due to (i) inherent low data availability from exchanges during this period, or
(ii) due to gaps in the data gathering/archival processes on our end, or (iii) due to a combination of both.
In any case, this allows us to simulate our protocol with low data availability. Our design choice of using
multiple data sources per node is justified to improve the reliability of our protocol even when the data
availability is low. Notice that for OKCoin we had a value at almost every minute, therefore, while for 30
second windows, it had values for almost every alternate window, whereas for 60 second windows its data
availability was very high.

Table 1: Percentage of times we did not have any value from various exchanges for a time window.

Exchange Null value
percentage
for 30 sec
windows

Null value
percentage
for 60 sec
windows

Binance 51.65 52.66
crypto.com 78.88 75.71
Coinbase 97.02 96.31
FTX 73.87 74.12
Huobi 44.45 45.51
OKCoin 46.66 0.5
OKEx 26.84 28.33
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Figure 5: Percentage of times a coherent cluster was formed as agreement distance increased. Agreement
distance is displayed as a percentage of 19605, the average BTC price.

For every round, every node would compute the median from the values it obtained from its 5 assigned
exchanges. If an exchange had multiple values within the given window, only the latest would be considered
by the node. Once every node had computed its median, these medians would be sorted to see if any 4 of the
7 nodes form a coherent cluster for a given value of d. Figure 5 shows the results from our simulation. As the
size of the observation window increases, one would naturally expect to see more deviation in values among
values of various exchanges. Therefore, one would expect that for a given d, the nodes would be able to form
coherent clusters more often for 30 second windows as compared to 60 second windows. With d of $16, the
cluster formation was achieved 90% and 88% for 30 and 60 seconds windows respectively. However, note the
drastic increase in data availability from OKCoin from the 30 to the 60 seconds observation periods. This
has contributed to the increased percentage of coherent cluster formation for a 60 second window for larger
d. For example with d being $53, cluster formation is achieved 99% of the time for 60 seconds windows.

Note that the choice of d has a bearing on both the safety and the performance of the protocol. Smaller
values of d would result in the protocol having to fall back more often, whereas higher values of d potentially
allow higher deviation of S from the ideal representative value of the mean of honest values.

If the value of a τ increases or decreases significantly, for safety and performance reasons, d should be
adjusted up and downwards accordingly.

4.2 Theoretical Analysis of Probabilistic Safety

We mention in Section 3.3 that we employ multiple aggregators. Figure 6a shows a logarithmic plot of how
the probability of having an entire family consisting of Byzantine aggregators reduces as we increase the size
of the family of aggregators. Since 1

3 of the nodes in the tribe could be Byzantine, it is evident that as we
increase the size of the family of aggregators, the probability of not having a single honest aggregator drops
exponentially fast.

Figure 6b shows how the probability of having at least one clan with a Byzantine majority changes as we
increase the size of the tribe. In the logarithmic plot, we can observe that increasing the size of the tribe to
a few hundred nodes would ensure that, with a very high probability, none of the 5 clans randomly drawn
from the tribe would have a Byzantine majority. To fully exploit the ability of DORA to tolerate up to 49%
Byzantine nodes, we propose to employ probabilistic safety guarantees. Figure 6b provides guidelines on
how many total nodes would be required to achieve the safety property with a very high probability.

Note that, if the adversary is fully adaptive and can compromise nodes after families and clans are
formed, the above probabilistic safety analysis is not applicable. We expect clans and families to be updated
regularly in practice.
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Figure 6: Probabilistic Safety Analysis
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5 Extensions

5.1 Assigning weights to the data sources

In Algorithm 1, we mandate the nodes listen to 2fd + 1 data sources, since fd of these data sources can
turn Byzantine. Each node computes the median of all the observations it makes from these 2fd + 1 data
sources. This algorithm, however, treats every data source equally. Different data sources, however, may
have different reliability guarantees, trading volumes, security guarantees and best practices, etc. It makes
sense that when we look at these aspects, different data sources should be treated differently. For example,
a data source that provides better reliability guarantees and follows the best security practices should be
given more weight when compared to some other data sources which may be inferior in these parameters.

To accommodate the differing traits of different data sources, we can define a weight function w : DS →
N+, which assigns different positive integer weights to different data sources. The weight can be determined
by considering parameters like historical reliability, volume/scale, and security practices followed by the data
source etc., and a suitable value can be assigned through data governance. It is important to note that while
we assign weight to the data sources, a data source crash or malfunction would affect any function that
takes its inputs in proportion to its weight. Therefore, we now must discuss the total weight of the data
sources that may turn Byzantine. In this modified setting, we can think of fd as the sum of the weights of
the data sources that can turn Byzantine. To accommodate this change, Algorithm 1 can be modified where
every node listens to data sources such that their total weight is 2fd + 1. In this case, whenever a value v is
received from a data-source ds, we would store as many as w(ds) copies in the multi-set obs (Line 7). The
size of Obs would still be between fd + 1 and 2fd + 1, the lower bound on the number of observations from
honest data sources would still be fd+1 and the number of observations from Byzantine data sources would
be upper-bounded by fd. Theorem 1 would still hold in this case. The rest of the protocol for DORA would
remain the same.

5.2 Cross-correlation across τ

In this paper, we have provided a protocol for solving the DORA problem for a given variable τ . In
practice, there are several different variables for which we want to solve the DORA problem for providing
oracle services. Therefore, we can leverage relations that exist amongst different variables. For example, let
τ1,τ2 and τ3 denote values of BTC/USD, ETH/USD, and BTC/ETH, respectively. We know that under normal
circumstances we have the relation τ1 = τ2τ3 among these variables. Ideally, we have that τ1 − τ2τ3 = 0. In
practice, however, we would hope that ∥τ1 − τ2τ3∥1 ≤ Dr, where Dr is the correlation distance denoting the
reasonably small deviation one can expect under normal circumstances.

We can utilize the relations amongst variables to detect anomalous behaviors in the variables. For
example, we know that whenever we detect ∥τ1 − τ2τ3∥1 > Dr, we know that one or more variables are
definitely exhibiting anomalous behaviors. For example, let us assume that we have data sources providing
data about multiple τ . Let for dsi, we have that τ1 − τ2τ3 = ci. If we have that distances between c1 and
other ci are very large, while ci, i ̸= 1 are very close to each other, it would indicate that ds1 is very likely
behaving in an anomalous fashion. When we use nodes to perform DORA for values of multiple variables τ ,
we can use similar multi-variate analyses to detect if one or more nodes are behaving anomalously.

In addition, this multi-variate setting can give us yet another way to solve the DORA problem. In this
paper, we have talked about an observation as a scalar value. Instead, one can envisage an observation of
a node to be a vector. In this case, we would redefine the agreement of two observations o1 and o2 as their
L2-norm distance to be within d, i.e., ∥o1 − o2∥2 ≤ d. This gives rise to a multi-dimensional version of the
DORA problem.

5.3 Indicators for volatility

High volatility in the sequence of emitted S could indicate issues either within the oracle network, the data
sources, or some other issues (i.e., economic issues if the variable represents a token, stock, or commodity
price). There are multiple ways to detect high volatility in the price of a commodity.

One of the popular predicates that is used looks like the following: |Sr−Sr−1|
Sr−1

> cbthr, here, cbthr is
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a circuit breaker threshold. Essentially, whenever a new value deviates from an old value by more than a
certain percentage, a circuit breaker is applied which can be used to flag an anomaly or freeze trades.

Another predicate that could be used would be to check if Sr falls within the bounds Sr−1± chσh, where,
ch is a constant parameter and σh is the standard deviation of the last Wh values. Here, Wh is the size of
the history window and would be a parameter. Compared to the circuit breaker function mentioned earlier,
this function looks at a larger history and tries to determine if the new value deviates from the old value by
more than usual. The interval defined in this fashion widens and narrows dynamically depending upon the
historical deviations observed. This way, if large deviations are sustained, the predicate adapts it to classify
it as the norm rather than an anomaly. We call this predicate a history consistency check.

As a value addition to the consumer of S, it is very easy to flag a value of Sr if it fails the history
consistency check. In a more general setting, one can think about a series of constant parameters 0 < c1 < c2
such that if the S falls within Sr−1± c1hσh, it is flagged as Green. If not, but if it falls within Sr−1± c2hσh,
it may be flagged as Yellow. If it falls outside of Sr−1± c2hσh, it may be flagged as Red. In general, one can
define a volatility index based on some monotonically increasing function of σh and ch.

It may be left to the consumer of this information to take such flags or index into account based on
the use case and the application. For example, one may not wish to carry out or trigger certain financial
transactions during the times of high volatility. It is possible to let the oracle protocol simply produce
a sequence of values, and any such flagging, filtering, or index decoration may be accomplished as post-
processing by a smart contract.

6 Discussion

6.1 Size of the oracle network

It is crucial to understand that the size of the oracle network has a huge bearing on both the safety and the
liveness of DORA. Two different oracle networks A and B, both operating with 3f + 1 nodes, where f of
them could be Byzantine, may differ greatly in offering safety and liveness. For example, let us assume that
A is running with 10 nodes and B is running the same protocol with 1000 nodes.

� With fewer nodes, the likelihood of nodes spread across different geographies, different data centers,
different countries, and different ISPs (Internet Service Providers) is far lower when compared to a
network operating with more nodes, when the nodes are independent entities. Internet traffic being
blocked by a country or an ISP, a crash or a compromise of a data center are events that have the
potential to cause a large fraction of nodes being disconnected from the oracle network. In such extreme
events, the likelihood that A would have more than f nodes getting disconnected is much higher as
compared to network B.

� Let us assume that it takes $1M to bribe a node operator to behave in a malicious fashion. Even
if we consider a linear model for the amount of bribe required to make a node malicious, it requires
$4M to compromise the safety of network A whereas one would have to gather $334M to compromise
the safety of network B. In a proof-of-stake framework, participant nodes are required to stake some
amount to be able to participate. In such a framework, let there be a reward for a whistle-blower which
can prove that fc + 1 nodes deviated from the protocol which resulted in an incorrect value Sr being
emitted. Let such a reward be equivalent to the stake of all fc + 1 nodes. In such a case, the amount
of the bribe required increases in a quadratic fashion since each node has to be bribed more than the
stake of 51% of the nodes. Due to this quadratic increase in the amount of bribe, the adversary needs
a much greater amount to compromise network B in comparison to network A.

� Let us assume that an adversary is using malware in order to execute its malicious plan of compromising
oracle safety. Irrespective of whether the rate of spread of malware is linear or exponential, it requires
much more time to affect 34% of the nodes of network B as compared to network A.

In general, for almost any attack vector, it would require significantly more resources (i.e., time, money
etc.) to compromise a larger network as compared to a smaller network.
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6.2 Data source failure

There are some other oracle models which are opaque about how the data is obtained by the node from a
data source. While the probability that the data source itself is malicious may be very low in practice, a
transient glitch in the data source is a real possibility that one must be able to accommodate while designing
an oracle with strong safety guarantees. There are plenty of documented glitches and bugs [6, 34] which
have resulted in stock exchanges coming to a grinding halt, or worse, emitting a price of a stock that is far
from its actual value.

Imagine a model where one node is receiving its data from one data source. Even though an honest node
is relaying the information that it received from the data source as-is to the oracle network, a glitch in the
data source can make an honest node behave in a Byzantine fashion. Any oracle design that does not take
into account the possibility of a Byzantine data source can not guarantee safety or liveness even in a 3f + 1
setting, where f nodes of the oracle can turn Byzantine. Imagine a network with f Byzantine nodes and one
Byzantine data source feeding to an honest node. This essentially breaches the limit of f nodes behaving in
a Byzantine fashion. The bounds of [Hmin,Hmax] are tight and a single additional Byzantine observation
can potentially introduce an unbounded error in the reported value. Our design for DORA ensures that
every node is listening to a sufficient number of data sources such that Byzantine behaviour of up to fd data
sources can be tolerated.

When an oracle design does not mandate which data source a node should receive its data from, it is
likely that many nodes would prefer receiving their data from a data source that is fast, considered relatively
more reliable, or cheaper to subscribe to, etc. This can skew the distribution of nodes listening to data
sources in favour of a few data sources. If one node is listening to only one data source and there is a
data source that is feeding data to more than f nodes, this data source becomes a single point of failure
for the entire oracle network. Therefore, it is of the utmost importance that every node not only listens to
multiple data sources but the mapping of nodes to data sources is fairly uniform to provide higher resilience
to the potential failure of a small set of data sources. Due to this consideration, in our oracle design we
mandate not only the minimum number of data sources that a node must receive its data from, but also a
uniform random assignment of data sources generated via a VRF (Verifiable Random Function) that a node
must listen to. Such a design results in one node listening to multiple data sources and also, every data
source feeding to multiple nodes. Such uniform random assignment practically eliminates the possibility of
Byzantine data sources making an honest node behave in a Byzantine fashion.

6.3 Role of randomization

When mapping data source to nodes, as well as mapping from nodes to τ , remains static for longer or
potentially indefinite period of time, it allows nodes to collude and launch a successful attack that may
violate the safety guarantees of the oracle network.

In the oracle design we propose, we create randomly drawn mutually exclusive clans Nc from the tribe
Nt. If our oracle network has a responsibility to produce a representative value for a set V consisting of

multiple distinct variables τ , we divide V into ⌊ |Nt|
|Nc|⌋ parts and randomly assign each part to a clan, where

each clan is responsible for all the variables τ belonging to its assigned partition. Mapping from the clan to
partition is randomly permuted after Trotate, which we shall term it as a rotation. Additionally, after Tshfl,
complete reorganization and shuffling of nodes of Nt into various Nc happens, which shall be termed as a
shuffle.

An additional possibility is to keep the size of the tribe fixed at |Nt|. Therefore, after every Tchurn, a
small fraction of nodes are churned out from the tribe and new nodes wanting to join the tribe can replace
them. A node that is churned out has to mandatorily execute a VDF (Verifiable Delay Function) before it
can be considered to rejoin the tribe.

Let us assume that Byzantine nodes within a particular clan Nc are colluding. Let us assume that they
want to manipulate the value of a specific variable τ , say BTC/USD. Note that the assignment of a variable τ
to a clan is not under the control of the adversary and such an assignment is done through a VRF. Therefore,
any such manipulation that the adversary wishes to cause is limited to the time duration Trotate after which
they will be given responsibility of a different variable. Note that, even within a clan, a Byzantine node
can introduce an additional deviation of at most d. In practice, d should be kept smaller than the average
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deviation in the value of τ while making a trade. Additionally, the shuffling of nodes after Tshfl ensures that
any such clan-level collusion is broken down.

Let us now consider a case in which all the Byzantine nodes of the entire tribe Nt are colluding. Please
note that as described in Section 6.1, the resources required by an adversary to compromise a sufficient
fraction of a network increases as the size of the network increases. Even with global collusion, the adversary
can not manipulate a τ unless the distribution of the nodes of Nt amongst clans are such that some clan has
Byzantine majority. Churning out of randomly selected nodes also acts as a mitigating factor in breaking
up any node collusion.

Moreover, we can leverage the idea of cross-correlations that exist amongst various τ (Section 5.2). We
can ensure that when an invariant involving multiple variables, say τ1− τ2τ3 = 0, must hold then τ1, τ2, and
τ3 are assigned to different clans. This makes it almost impractical for any adversary to remain undetected
in a forensic analysis of data. In the future, we would explore the idea of the SMR doing an additional
check that the values being posted by an aggregator for a variable keeps the invariant involving that variable
within a tolerable range. This is one potential idea where cross-correlation can act as a preventive measure
as opposed to an investigative measure.

7 Conclusion

We present a novel distributed oracle agreement protocol that allows the oracle network to function with
only 2f + 1 nodes, when the prices of a commodity are not fluctuating wildly, by leveraging SMR as an
ordering primitive and updating the notion of agreement amongst nodes.

We have shown that data sources do pose a data availability risk and therefore it is wise to mandate nodes
to gather data from multiple data sources. We have also shown the trade-off that the agreement distance
parameter offers in terms of safety and performance.

We show that it is possible to build safe and efficient oracle networks with high probabilistic safety
guarantees by making appropriate choices on the size of the network and the size of the family of aggregators.
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