
Moonshot: Optimistic Proposal for
Blockchain-Based State Machine Replication

v1.0 — Wednesday 12th July, 2023

Supra Research

Abstract—We introduce Moonshot, a new family of
single-leader Byzantine Fault Tolerant (BFT) blockchain-
based SMR protocols characterised by a new method
of round pipelining facilitated by optimistic proposal. We
formally describe Chained Moonshot, a variant of Moon-
shot that leverages the QC-chaining of Chained HotStuff
while maintaining the best-case block finalisation latency
of non-pipelined, vote-broadcast protocols like PBFT and
Tendermint.

Chained Moonshot’s combination of optimistic proposal
and vote broadcasting ensure that validators are never
idle by enabling proposal and voting to occur at network
speed when the propagation times of Prepare and Proposal
messages are equal. Despite Chained Moonshot’s increased
communication complexity in the Normal Path when com-
pared to its recent predecessors, it demonstrably improves
upon their block finalisation latency and block throughput.
Our theoretical analysis reveals that Chained Moonshot
has an expected 40% lower block finalisation latency and
50% decreased block period compared to Jolteon when
the propagation times of Prepare and Proposal messages
are equal. Our experimental results support this analysis,
with Moonshot exhibiting an average of 41.1% lower block
commit latency and 54.9% higher block throughput when
compared to Jolteon in WANs of 10, 50, 100 and 200 nodes
for varying payload sizes.

Index Terms—blockchain consensus, state machine repli-
cation

I. INTRODUCTION

Public blockchain networks are revolutionising mod-
ern society by facilitating decentralised, immutable and
verifiable data exchange for the first time in human
history. These networks fundamentally provide decen-
tralised computation and storage by marrying fault-
tolerant distributed systems design with cryptography
to enable higher transparency and accountability than
traditional centralised computer networks.

At the heart of these networks are consensus proto-
cols that enable state machine replication (SMR) [8].
A blockchain network is a form of distributed state
machine, which is transitioned from one state to an-
other by applying client-submitted instructions called

transactions. SMR protocols ensure that every node in
the network maintains a consistent state by facilitating
their agreement upon the order in which these transac-
tions should be executed. A Byzantine Fault Tolerant
(BFT) [7] SMR protocol is one that tolerates a fixed
number of faulty participants. These faulty processes,
termed Byzantine, may crash or deviate arbitrarily from
the protocol, but are assumed to be unable to break
cryptographic primitives like signatures.

With these definitions in mind we distinguish between
the term blockchain network, as the colloquial name
for a network running any type of BFT SMR protocol,
and blockchain-based SMR protocol, as the name for a
particular category of SMR protocols. Blockchain-based
SMR protocols differ from other types of SMR protocols
in that they group transactions into blocks, with each
new block committed by the network referencing the
previously committed one as its parent, thus forming
the blockchain.

We innovate Moonshot, a family of BFT blockchain-
based SMR protocols characterised by optimistic pro-
posal, a novel optimisation distinct from the round
pipelining of Chained HotStuff [10] and its successors.
This paper primarily focuses on Chained Moonshot,
a variant of Moonshot that leverages both optimistic
proposal and QC chaining, both of which techniques we
go on to define properly in Section III.

A. Paper Structure

We present Moonshot in several stages. Section II
establishes the conceptual context for our new family of
consensus protocols. Section III explains the fundamen-
tal insight behind Moonshot by informally comparing it
with some of its predecessors, while Section IV describes
Chained Moonshot in full along with the pseudocode. A
more detailed discussion elaborating on some aspects of
the design of Chained Moonshot and the properties of the
protocol is presented in Section V. Section VI elaborates
on how Chained Moonshot can be made more efficient

by decreasing the size of Prepare and PrepareQC mes-
sages. Section VII provides formal proofs showing that
Chained Moonshot achieves both the Safety and Liveness
SMR properties. Section VIII presents an evaluation of
our implementation against Jolteon. Finally, Section IX
concludes the paper.

II. PRELIMINARIES

We now establish some definitions that will be used
throughout the rest of the paper.

A. Network Model

We consider a fully-connected network composed of a
set V = {v1, ..., vn} of n processes running a protocol P
in the Authenticated Byzantine [4] setting. Accordingly,
we assume the existence of an adversary that works to
violate the guarantees of P . We allow the adversary to
corrupt up to f processes when the network is initialised,
which we thereafter refer to as being Byzantine and to the
remainder as being honest. We assume that the adversary
controls all communication channels, with the following
caveats: We assume that the communication channels
between the processes in V are perfect, meaning that
messages sent by honest processes cannot be lost in
transit and cannot be dropped by the adversary. We
also assume that these channels are collectively partially
synchronous.

We recall the definition of Partial Synchrony With
GST established in [4], with some clarifications added in
our own words to preserve the meaning of the definition
per its original context:

Definition 1. For every run R of P , there is a time
T such that ∆ holds as an upper bound on the time
taken for message delivery between each pair of honest
processes (vi, vj) ∈ V × V in [T,∞). Such a time T is
called the Global Stabilisation Time (GST).

We adopt a modified version of this definition to allow
for alternating periods of asynchrony and synchrony
during a given run R of P . Our updated definition aligns
with the observation in [4] that ∆ need not hold as the
upper bound on message delivery forever after GST, but
instead only until GST +M (the original paper uses L,
but we reserve this symbol for a future definition), where
M is the minimum duration of synchrony required for
P to be guaranteed to make progress. We formalise this
observation to allow us to give precise definitions of the
properties that a blockchain-based SMR must exhibit,
which we will come to shortly. Our modified version of
partial synchrony follows.

We model each (possibly infinite) run of P , denoted
R = ((A0, S0), (A1, S1), ...), as a sequence of pairs of
finite time intervals with durations determined by the
adversary. We allow the adversary to cause (any and)
all communication channels to become asynchronous
at their discretion during each Ak (k ≥ 0), allowing
them to arbitrarily delay messages of their choice. We
define the initial moment of each Sk as the next Global
Stabilisation Time, after which time the adversary must
ensure that all protocol messages have an upper bound
of ∆ on their delivery latencies for the duration of the
subsequent synchronous interval Sk. For the sake of
simplicity, we assume that ∆ is known to the designer
of P . We use SR to denote the set of all synchronous
intervals in R.

We thus formally define Partial Synchrony With Re-
peated GST as follows:

Definition 2. For every run R = ((A0, S0), (A1, S1), ...)
of P , ∆ holds as an upper bound on the time taken for
message delivery between each pair of honest processes
(vi, vj) ∈ V × V for the duration of each S ∈ SR. We
refer to the first moment of each S ∈ SR as a Global
Stabilisation Time (GST).

We know from [4] that no SMR protocol operating
in a partially synchronous system of n processes can
tolerate f > ⌊n−1

3 ⌋. For the ease of reading and without
loss of generality, we fix n = 3f + 1 for the rest of the
paper. Informally, we use the term quorum to refer to
a subset of ⌊n+f

2 ⌋ + 1 (i.e. 2f + 1 when n = 3f + 1)
unique processes from V , which is guaranteed to have
an honest majority.

For the sake of this paper, we assume that P is a
blockchain-based SMR protocol, which we now formally
define.

B. Blockchain-Based State Machine Replication

As mentioned in Section I, we informally define a
blockchain-based SMR protocol as an SMR protocol
in which client transactions are grouped into blocks
that explicitly reference one another in order to form
a blockchain. We assume that each block references
at most one previously proposed block, and that these
blocks are proposed in sequential rounds by an elected
leader process. We assume that every process v ∈ V
that participates in such a protocol maintains a local
copy, denoted Bv, of the canonical blockchain. We use
Bvi

⪯ Bvj
to denote that the canonical blockchain of

vi is a prefix of that of vj .

2

With these definitions in mind, we now formally de-
fine the properties of a blockchain-based SMR protocol
P operating in the partially synchronous setting.

Let RP denote the set of all possible runs of P .
Additionally, let CR(M) = {S | S ∈ SR and |S| ≥M},
where |S| denotes the duration of the given synchronous
interval S of the run R and M , as before, is the minimum
duration of synchrony required for P to be guaranteed to
make progress. We observe that since P is a blockchain-
based SMR protocol, P makes progress when each
honest v ∈ V adds at least one new block proposed
by an honest leader to its local blockchain Bv.

Definition 3. In a partially synchronous network of n
processes with an f -limited adversary, P satisfies the
following properties:

Liveness. For every run R ∈ RP , for each synchronous
interval S ∈ CR(M), each honest process v ∈ V
appends at least ⌊ |S|

M ⌋ new blocks proposed by
honest leaders to its local blockchain Bv during
S.

Safety. For every run R ∈ RP , for each pair of honest
processes (vi, vj) ∈ V ×V , at each moment during
R either Bvi

⪯ Bvj
or Bvj

⪯ Bvi
.

III. INSIGHT

We now discuss the core insight behind Moonshot, but
before we do so we first establish a model for comparing
Moonshot to its predecessors.

A. Method of Analysis

We analyse the theoretical performance of Moonshot
and compare it to its predecessors in terms of its block
period and block commit latency. We define block period
in terms of the network delay between consecutive block
proposals and commit latency as the delay between the
proposal of a block and its commit by the 2f + 1th
process. We use δ to represent the average message
transmission latency after GST. We measure δ over the
duration of any given run of the related protocol as
the average time between the dispatch of any message
on a point-to-point link after GST until its receipt.
Accordingly, δ ≤ ∆. We observe that δ is imprecise
since it does not factor in either the relative sizes of the
different types of messages or the size of the network,
but consider it to be a suitable approximation for now.
We will go on to define a more precise analytical model
in a later version of this paper, which will introduce
additional variants of Moonshot.

B. Contribution

The Practical Byzantine Fault Tolerance (PBFT) pro-
tocol [3] was the first workable solution for BFT SMR in
the partially synchronous setting. Later, Tendermint [2]
adapted PBFT for the blockchain setting. Figure 1 shows
the normal case operation of the Tendermint protocol,
where the Prevote and Precommit phases have been
renamed to Prepare and Commit, respectively, for the
convenience of relating to the terminology used in
this paper. Each Tendermint instance proceeds in three
phases: Propose, Prepare and Commit.

Communication in Tendermint is achieved via a gossip
protocol in the original construction of the protocol,
but for the sake of a fair comparison to our protocol
we assume a modified version of Tendermint that op-
erates in the same setting as described in Section II.
Accordingly, we consider a variant of Tendermint that
sends all messages over point-to-point links in a fully-
connected network. We observe that since Tendermint
requires that “if a correct process p receives some
message m at time t, all correct processes will receive m
before max{t, GST}+∆” [2] for the sake of liveness,
honest processes must re-broadcast all messages that
they receive.

In the first phase of Tendermint, the leader of the
current round broadcasts a block in a signed Proposal
message. A validator then enters the Prepare phase after
receiving a valid Proposal from the leader, and re-
broadcasts it along with a Prepare message to indicate
its endorsement of the Proposal. The validator then waits
to receive a quorum of valid Prepare messages (each of
which it must re-broadcast) and then constructs a Pre-
pare Quorum Certificate (Prepare QC) as verifiable proof
that a quorum of processes have accepted the leader’s
proposal. After forming this QC, the process enters the
Commit phase and broadcasts a Commit message as
a second endorsement of the Proposal. As before, the
process then waits to receive a quorum of valid Commit
messages before forming Commit Quorum Certificate
and committing the block. Accordingly, this variant of
Tendermint has a best-case proposal-to-commit latency,
a best-case block period of 3δ and a communication
complexity of O(n3).

Chained HotStuff [10] introduced the notion of round
pipelining. For the rest of the paper we distinguish
between pipelining, as a methodology of concurrently
transmitting messages, and chaining, as a mechanism
enabling a message to serve multiple purposes. Chained
HotStuff enables multiple consensus rounds to proceed
concurrently by allowing leaders to create new Proposals

3

Fig. 1. Tendermint Normal Path

justified by the Prepare QC for the proposal of their
predecessor. The original protocol assumes that leaders
serve as aggregators for the Prepare votes for their
own Proposals, resulting, like Tendermint, in a best-case
block period of 3δ. DiemBFT [9] and Jolteon [6], both
of which are variants of Chained HotStuff, instead have
validators relay their Prepare votes directly to the next
leader and thus exhibit a best-case block period of of 2δ,
a noteworthy improvement over Tendermint.

We take Chained HotStuff’s round pipelining one step
further to innovate Moonshot, a new class of blockchain-
based SMR protocols with a best-case block period of
δ. We start by observing that the liveness of blockchain-
based SMR protocols depends on a leader being able
to refer to the block proposed for the previous height
when making its own Proposal, meaning that the Propose
phases of successive heights must proceed sequentially.
However, the safety of such protocols is dictated only
by their rules for voting and committing. Therefore, the
Propose phase for a given height, despite being depen-
dent on the Propose phases of the previous heights for
liveness, is actually independent of their corresponding
Prepare phases with respect to safety. This observation
reveals a new avenue for pipelining wherein the Prepare
phase of an earlier round can be safely overlapped with
the Propose phases of later ones. Allowing leaders to

extend blocks not yet accepted by a quorum improves
bandwidth utilisation under normal-case operation by
enabling Prepare votes and new Proposals to be trans-
mitted concurrently. Hereafter, we refer to this type of
pipelining as optimistic proposal, and refer to traditional
pipelining as round pipelining.

Chained HotStuff and its derivatives suffer an in-
creased commit latency compared to Tendermint as a
result of their pursuit of linear normal-case communi-
cation complexity. They achieve this by using a single
aggregator to collect votes, which necessarily increases
the minimum duration of each voting phase from δ to at
least 2δ. Consequently, Jolteon, a two-chain variant of
Chained HotStuff (i.e. a variant with two voting phases
per block) and the most efficient of the aforementioned
derivatives of Chained HotStuff, exhibits a best-case
commit latency of 5δ.

For the purposes of this paper, we assume that trading
increased communication complexity for decreased best-
case theoretical block period and commit latency will
produce a practically more efficient protocol. Accord-
ingly, we present Chained Moonshot, a member of the
Moonshot family of protocols that utilises QC chaining
and vote-broadcasting to obtain a best-case block period
of δ, commit latency of 3δ and communication complex-
ity of O(n2), as shown in Figure 2.

4

Fig. 2. Chained Moonshot Normal Path

IV. CHAINED MOONSHOT

We now present the Chained Moonshot SMR protocol.

A. Blockchain Model

A well-formed Chained Moonshot block Br contains
the round identifier r for which the block was proposed,
the digest of its parent block B′, and a possibly-empty
payload. We model this payload as an abstract repre-
sentation of a totally-ordered set of transactions from
the clients of the system. We consider the problems of
transaction delivery and execution to be orthogonal to
the problem of transaction ordering and so do not require
payloads to include the transactions themselves. We as-
sume that the method of transaction delivery utilised by
any implementation of Moonshot guarantees that every
transaction that is ordered by Moonshot is eventually
delivered to all honest processes. We likewise assume
that the method of execution respects the total ordering
imposed upon the transactions by the blockchain, and
that the transactions themselves contain only determin-
istic operations.

We model the local blockchain of each process v ∈ V ,
Bv , as a totally-ordered sequence of blocks Bv =
(B0, Br, . . ., Bh), indexed by the rounds for which they
were proposed. We assume that every Bv is initialised
with B0, a common Genesis Block that contains all

configuration information required by the system at start-
up, about which we remain agnostic. We assume that
every v ∈ V also possesses QC0, a Quorum Certificate
justifying B0, upon initialisation.

B. Leader Election
Being a blockchain-based SMR protocol, Chained

Moonshot proceeds in rounds. Each v ∈ V is assigned
the role of either leader or validator upon entering a
new round. The leader of each round, Lr, is elected
via a function L that we assume is fair, giving every
process in the system equal opportunity to become
leader. We distinguish between deterministic fairness and
probabilistic fairness in Definition 4.

Definition 4. A leader election function L that samples
from V can be said to be fair if it satisfies either of the
following definitions:
Deterministic Fairness. A deterministically fair L

guarantees that there exists some k such that each
v ∈ V leads exactly k rounds every kn rounds.

Probabilistic Fairness. A probabilistically fair L guar-
antees that there exists some k such that the ex-
pected number of rounds led by each v ∈ V every
kn rounds is k.

We observe that since the definition of Liveness given
in Definition 3 requires at least one honest block pro-

5

posal to be committed during each synchronous interval
lasting at least M , the leader election function of P
must deterministically elect at least one honest leader
during this time (notice that this is a necessary condition
for Liveness, but is not sufficient). Consequently, any P
that uses a probabilistic L can only be said to obtain
probabilistic liveness under this definition.

We make no assumptions about whether L can be used
to predict leaders in advance and observe that there are
known strategies for preventing this (e.g. [5]) when it
is considered undesirable. We also assume that Lr has
access to a pool of unique, uncommitted transactions or
abstractions thereof that it samples from when creating
a new block, but leave the related selection function
abstract.

C. Specification

We simplify the following specification by making
a key assumption to eliminate complexity from the
protocol that is orthogonal to our contribution. Namely,
we assume that both Prepare messages and QCs contain
the related block. We observe that this results in a
protocol with significantly higher communication costs
than the standard approach for such messages, which is
to instead include a unique identifier called the digest
of the block. However, the methods for implementing
this optimisation are well-known, so we predicate our
subsequent analyses and proofs on the variant of Chained
Moonshot that implements this optimisation. We discuss
this variant in greater detail in Section VI.

Table I shows the variables that each process v is
required to maintain according to the pseudocode pre-
sented in Algorithms 1 and 2. We also assume the
availability of the functions defined in Table II, for which
we provide only abstract definitions.

We present our pseudocode for Chained Moon-
shot as a series of event handlers of the form
upon ⟨event⟩ do ⟨action⟩. We use the following quali-
fiers to differentiate between the different types of events
that trigger the processing of protocol messages:

• We use the term observing to indicate that the
event’s validity condition is independent of v’s
current round, implying that it need not persist the
corresponding message unless the subsequent action
causes it to do so.

• We use posessing to indicate that v will need
to enter a particular round in order to satisfy the
event’s validity condition, which will require v to
persist the corresponding message if it receives it
before entering that round.

TABLE I
LOCAL VARIABLES FOR v ∈ V

af The highest round for which this process has
accepted (and thus broadcasted a Prepare message
for) a Fallback Recovery Proposal. Initially 0.

an The highest round for which this process has
accepted (and thus broadcasted a Prepare message
for) a Normal Proposal. Initially 0.

Bn The last block that this process proposed as a
Normal Proposal. Initially B0.

Bh The block most recently appended to Bv . Ini-
tially B0.

Bv A representation of all blocks committed by v.
Initially covers only B0.

E A set containing the identifiers of all rounds that
v considers to have expired due to having sent
the corresponding Timeout message. Initially ∅.

id The public identifier of v.
pf The highest round for which this process has

broadcasted a Fallback Recovery Proposal. Ini-
tially 0.

qcl The currently locked QC. Initially QC0.
rc The identifier of the current round. Initially 1.
tr The timer used to trigger Timeout events. Initially

0.
U A set containing all uncommitted QCs observed

by v. Initially ∅.

We use no qualifier for the handler for the expiry of the
round timer tr because it does not process any protocol
message.

These event handlers in turn make use of procedures,
by which we abstract certain functionality for ease of
reading. Likewise, we use the following symbols to that
same end: We use | in place of the term “such that”, and
∧, ¬, ← and = as the Logical And, Logical Negation,
Assignment and Equality operators, respectively. We also
use ∀ to denote the universal quantifier and replace object
fields with when they are not used by the handler in
question. We use B ⇐= B′ (pronounced “B′ extends
B”) to denote that B is the parent of B′, and B ⇐=∗ B′′

to indicate that B is an ancestor of B′′. More formally,
we use⇐=∗ to denote the reflexive and transitive closure
of ⇐=.

Message Definitions

Our protocol proceeds via the messages Normal Pro-
posal, Fallback Recovery Proposal, Prepare, Timeout,
QC and TC. To keep the pseudocode of Algorithms 1
and 2 concise, we use the abbreviations N, F, P and
T for the first four messages, respectively. The contents
of these messages and their respective validity conditions
are described below. As mentioned in Section II, Chained
Moonshot operates in the Authenticated Byzantine set-
ting, so we assume that all messages are signed by the

6

TABLE II
ABSTRACT FUNCTIONS

broadcast(m) Sends the message m to all v ∈ V .
cleanup(r) Purges all Prepare and Proposal messages for r′ ≤ r from memory and disk. Also sets a timer for 2∆ and purges

all Timeout messages for r′ ≤ r including those in E upon its expiry.
commit(qc) Schedules qc.B and all of its uncommitted ancestors to be appended to v’s local blockchain in increasing order

of their height as they become available. That is, if v has yet to receive some ancestor Ba of qc.B, then it waits
until Ba it has received Ba before appending any of its descendents. Upon appending Br , v removes all QCs and
blocks for r′ ≤ r from U and any other in-memory or on-disk storage, except for from Bh, Bv , Bn and qcl. We
leave it up to the implementer as to whether this procedure also executes the transactions included in B, which we
observe may be done later if the system so requires.

digest(m) Returns a fixed, concise, collision-resistant representation of m.
hasQuorum(m) Returns true only if m is a QC or a TC, m.c was constructed from a quorum of valid component messages for

m and all of these messages were sent by different members of V .
isMaxQC(qc, c) Returns true only if c proves that qc.r is the greatest round number of any QC used to construct c.
max(v1, v2) Returns v1 if v1 > v2, otherwise returns v2.
maxQC(s) Returns the QC with the highest round included in the set s.
resetRoundT imer() Starts the round timer tr or resets it if it is already running.
txs() Returns a set of transactions that have not been included in a committed block, or ∅ if none are currently available.
sendersAreUnique(s) Returns true if all messages contained in the set s were sent by different members of V .

sender and come with all of the information required to
verify this signature. We further assume that these sig-
natures cover a domain-unique identifier and the round
number in addition to the value being signed, to prevent
replay attacks.

A well-formed Normal Proposal contains the pro-
posed block Br, which, as previously mentioned, in
turn contains at least the round identifier r, the di-
gest of the parent block B′, and a possibly-empty set
of transactions. Including the digest of B′ in Br in
this manner allows us to implement the parent relation
B′ ⇐= Br. Comparatively, a well-formed Fallback
Recovery Proposal contains the proposed block Br and
a well-formed Timeout Certificate for r − 2, denoted
TCr−2. We elaborate on the validity conditions for each
proposal type in the following subsections.

A well-formed Prepare vote contains the related block
Br. Since honest processes are allowed to vote up to
twice in a given round r, a validator v with rc ≤ r + 1
accepts at most two Prepare messages for round r from
each of its peers to prevent the Byzantine processes from
consuming its memory by spamming votes for the same
round. We omit this logic from the pseudocode presented
in Algorithm 1 for the sake of brevity.

A well-formed QC for a block Br, denoted QCr,
contains Br and a representation c, chosen by the
implementer, of a quorum of valid Prepare messages
for Br. A validator v considers QCr valid only if c
proves that QCr was constructed from a quorum of valid
Prepare messages for Br from unique processes.

A well-formed Timeout message for a round r, de-
noted Tr, contains the related round identifier r and a

QC. This QC should be the highest QC observed by
the sender at the time that it created Tr. A validator v
considers Tr valid if it is the first such message from
the given sender and v has not yet garbage-collected
its Timeout messages for r per the semantics of the
cleanup function defined in Table II. As with the
accept logic for Prepare messages, we omit this logic
for Timeout messages from the pseudocode presented in
Algorithm 2 for the sake of brevity.

A well-formed TCr contains the round identifier r
and a certificate c constructed from a quorum of valid
Timeout messages for r from unique processes. It also
contains qc′, the QC with the maximum round number
contained in the set of Timeout messages used to con-
struct c. The certificate c must prove both that a quorum
of processes have sent Tr messages and that qc′ is the
maximum QC submitted by the quorum. We observe that
one valid construction for c is the set containing the pairs
(σv(r, qc.r), qc.r) derived from the original quorum of
Tr messages, where σv(r, qc.r) is the signature of the
sender v on both r and the round number of the QC that
it included in its Tr. A validator v considers TCr valid
only if c proves the aforementioned properties and qc′

is for a round less than r.

We observe that the above definitions admit some
abuse from the adversary, especially if it is able to
predict the rounds in which it will have the right
to propose in advance. Specifically, without additional
validity conditions for Normal Proposals, Prepares and
Timeouts, the adversary can spam honest processes with
valid messages for higher rounds until their storage is
consumed. We consider this problem orthogonal to our

7

contribution, but observe that one way that this could
be prevented without increasing the asymptotic com-
munication complexity of the protocol is by requiring
these messages for a given round r to include a quorum
threshold signature on r − 2.

D. Normal Path for v ∈ V
All processes start in round 1 in the state described

in Table I upon the initialisation of Chained Moonshot.
If L1 is honest then it attempts to create and broadcast
B1, a child of B0, as a Normal Proposal. Subsequently,
all honest processes immediately advance to round 2 via
QC0 and reset their round timers. We omit this sequence
from the pseudocode given in Algorithm 1 for the sake
of brevity.

More generally, an honest process v enters round r+2
via the Normal Round Transition Rule and resets its
round timer after observing a QC for r. After entering
round r, Lr becomes eligible to propose a Normal
Proposal and v becomes eligible to vote for proposals
from Lr−1. Specifically, the first time that Lr possesses a
Normal Proposal containing the block Br−1 with parent
B′ from Lr−1 whilst in r, it tries to create a Normal
Proposal of its own. If Lr has not already created a
proposal for r, then it will succeed and will create and
broadcast a Normal Proposal containing a block Br that
extends Br−1.

Notice that Lr does not verify the certification of
either Br−1 or its parent before making its own proposal.
Instead, it proposes optimistically, assuming that both
blocks will become valid if they are not already, and that
their certificates will be locked by a quorum of its peers.
If Lr−1 is Byzantine it can therefore take advantage of
this fact to cause Lr to create an invalid Normal Proposal
by sending it an arbitrary block for r − 1. However, Lr

will usually eventually be able recognise that it has been
lied to and will update its proposal accordingly, as we
will see.

Comparatively, v is not permitted to vote for Br−1

unless it is locked on a QC for B′. This helps the
protocol to obtain the Safety SMR property, as elucidated
in Section VII. In addition to being locked on the QC
for B′, v must not yet have voted for a Normal Proposal
from Lr−1, must not have sent Tr and B′ must have been
proposed for r−2. If all of these conditions are satisfied
then v considers Br−1 to have satisfied the Normal Vote
Rule and broadcasts a Prepare vote for Br−1.

After observing a quorum of Prepare votes for Br−1

from unique processes including itself, v constructs a QC
for Br−1 by aggregating the Prepare votes into a verifi-
able proof that a quorum of processes voted for Br−1.

Algorithm 1: Normal Path for v ∈ V
1 procedure proposeNormal(B) do
2 if Lrc = id ∧ rc > pf ∧ ¬(B ⇐= Bn) then
3 Bn ← Block(rc, digest(B), txs())
4 broadcast(N(Bn))

5 procedure advanceToRound(r) do
6 if r > rc then
7 rc ← r
8 resetRoundTimer()
9 cleanup(r − 2)

10 procedure tryLock(qc) do
11 r ← qc.B.r
12 if r > qcl.B.r ∧ r + 1 ≥ rc ∧ r /∈ E then
13 qcl ← qc

14 procedure tryCommit(qc) do
15 forall qc′ ∈ U do
16 if qc′.B.r + 1 = qc.B.r
17 ∧ qc.B ⇐= qc′.B then
18 commit(qc′)
19 if qc.B.r + 1 = qc′.B.r
20 ∧ qc′.B ⇐= qc.B then
21 commit(qc)

22 upon first observing qc ← QC(B,) either
received in a valid protocol message or built
from a quorum of P(B)

23 | hasQuorum(qc)
24 do
25 if B.r + 2 > rc then
26 proposeNormal(B)
27 U ← U ∪ {qc}
28 tryLock(qc)
29 tryCommit(qc)
30 broadcast(qc)
31 advanceToRound(B.r + 2)

32 upon first possessing a N(B) from Lrc−1

33 | B.r + 1 = rc
34 ∧ rc > Bn.r
35 do
36 proposeNormal(B)

37 upon first possessing a N(B) from Lrc−1

38 | B.r + 1 = rc ∧ B.r > an ∧ B.r /∈ E
39 ∧ qcl.B ⇐= B
40 ∧ qcl.B.r + 1 = B.r
41 do
42 broadcast(P(B))
43 an ← B.r

8

We remain agnostic as to what this proof consists of for
the sake of the generality this specification, but discuss
some options for its construction in the Section V.

The first time that v observes a valid QCr it executes
the QC Processing Rule. This happens when v either
constructs QCr itself or receives it from one of its peers
in a protocol message. Importantly, if v receives QCr in
another protocol message then it processes QCr before
the message that contains it. Firstly, v checks the round
of the QC. If v is currently in round r + 1 then it
attempts to propose via the QC Extension Rule. This
attempt only succeeds if v is Lr+1, has not yet created
a Fallback Recovery Proposal for r + 1 and has not
yet created a Normal Proposal extending the certified
block. Importantly, this rule allows Lr+1 to re-propose
if it originally created an invalid Normal Proposal due to
receiving an equivocal or invalid Normal Proposal from
Lr.

Subsequently, v adds QCr to its set of uncommitted
QCs before attempting to lock it. The Lock Rule only
allows v to lock QCr if r is greater than the round of
its currently locked QC, it is in r + 1 or lower and has
yet to send Tr. Intuitively, since v is only allowed to vote
for a Normal Proposal if it is locked on its parent, the
final requirement ensures that if f + 1 honest processes
send Timeout messages for r then it will be impossible
for any honest process to observe a QC for a Normal
Proposal for r + 1. This helps to ensure the Safety of
the protocol, the complete proof for which is given in
Section VII.

After trying to lock QCr v checks whether it autho-
rises the commit of any new blocks. It does this by
checking whether its set of uncommitted QCs contains
a QC for a block B′ such that either B′ ⇐= Br and
B′.r = r − 1 or Br ⇐= B′ and B′.r = r + 1. In
the former case, QCr triggers the Commit Rule for B′

and in the latter the QC for B′ does so for Br. This
check prevents the adversary from delaying commits by
delivering QCs out of order. In both cases, v schedules
the committed block to be appended to Bv once it has
received all of its ancestors.

Next, v broadcasts QCr to ensure that all of its peers
will observe it in a timely manner. This is necessary to
ensure the Liveness of the protocol, which the adversary
can otherwise inhibit, as discussed in Section V. Finally,
v attempts to enter r + 2 as previously described.

In addition to the aforementioned actions that v takes
upon entering round r it also becomes free to purge
all Prepare and Proposal messages for r′ ≤ r − 2, but
must continue to accept previously unseen QCs for lower
rounds. We include this action as the default behaviour in

Algorithm 2: Fallback Path for v ∈ V
44 procedure proposeFallback(tc) do
45 r := tc.r + 1
46 if Lr = id then
47 d ← digest(tc.qc′.B)
48 B ← Block(r, d, txs())
49 broadcast(F(B, tc))
50 pf ← r

51 procedure timeout(r) do
52 if r /∈ E then
53 broadcast(T(r, maxQC(U)))
54 E ← E ∪ {r}
55 upon tr = τ
56 do
57 timeout(rc − 1)

58 upon first observing a set S of f + 1 T(r,)
59 | sendersAreUnique(S)
60 ∧ r > Bh.r
61 ∧ ∀qc ∈ U, qc.r ̸= r
62 do
63 timeout(r)

64 upon first observing tc ← TC(r, qc′, c) either
received in a valid F or built from a quorum of
T(r,)

65 | hasQuorum(tc)
66 ∧ isMaxQC(qc′, c)
67 do
68 if r + 2 > rc then
69 proposeFallback(tc)
70 timeout(r)
71 advanceToRound(r + 2)

72 upon first possessing a F(B, tc) from Lrc−1

73 with qc′ = tc.qc′

74 | B.r + 1 = rc ∧ B.r = tc.r + 1
75 ∧ qc′.B ⇐= B
76 ∧ hasQuorum(tc)
77 ∧ isMaxQC(tc.qc′, tc.c)
78 do
79 proposeNormal(B)
80 if B.r > af ∧ B.r /∈ E then
81 broadcast(P(B))
82 af ← B.r

9

our pseudocode, abstracted by the cleanup function,
but recognise that some implementations may wish to
preserve this information for auditing or other purposes.

E. Fallback Path for v ∈ V
Suppose that an honest process v enters a new round

r at time t. It subsequently enters the fallback path and
broadcasts Tr−1 if it fails to either observe a QC for any
block proposed in r − 1 or enter a higher round, before
t+τ , where τ > 4∆. When it broadcasts Tr−1 as a result
of this condition or as a result of any of the following
rules, then it adds r − 1 to its set of expired rounds,
ignores any subsequently received proposals from Lr−1

and accepts but does not lock any related QC.
As mentioned in the message definitions, an honest

process that has yet to garbage collect the Timeout
messages for r per the cleanup function accepts the
first Timeout message for r that it receives from a given
sender. If v observes f+1 valid Tr messages from unique
senders including itself while having yet to append a
block for r or higher to Bv and not having QCr in U ,
then it triggers the Timeout Sync Rule and broadcasts its
own Tr if it has not already done so. If v waits at least
2∆ after entering r+2 before garbage collecting Timeout
messages for r or lower, which we assume is facilitated
by the aforementioned cleanup function, then this rule
provides an important guarantee. Namely, that after GST
all honest process will enter to r+2 or higher within 2∆
of the first honest process entering r + 2, regardless of
the behaviour of the adversary, as shown in Lemma 7.

After observing a quorum of valid Tr messages, v
constructs TCr as previously described. The first time
v observes such a TC, be it due to constructing the
TC itself or due to receiving it in a Fallback Recovery
Proposal, it executes the TC Processing Rule. As with
QCs, v executes this rule for any TCs that it receives
in Fallback Recovery Proposals before processing the
related proposal.

Initially, if v is Lr+1, is in a round below r + 2 and
has yet to create a Fallback Recovery Proposal, then it
creates a new Fallback Recovery Proposal containing a
new block B′ ⇐= Br+1, where B′ is the block certified
by TCr.qc

′. Like the QC Extension Rule, this rule
allows Lr+1 to correct any Normal Proposal that it may
have made as a result of previously observing a Normal
Proposal from Lr, which it can infer is now guaranteed
to fail. As previously observed, v’s observation of TCr

makes this inference possible because of the Lock and
Normal Vote Rules (see Lemma 2). Subsequently, v
broadcasts Tr if it has yet to do so and enters r + 2
if it has yet to enter r + 2 or higher.

Any validator in round r that possesses a Fallback
Recovery Proposal F (Br−1, TCr−2) from Lr−1 en-
sures that the parent of Br−1 is the block certified by
TCr−2.qc

′. The first time it possess such a proposal
it attempts to create a new Normal Proposal extending
Br−1, succeeding only if it is Lr. It then attempts to
send a Prepare vote for Br−1, succeeding only if it has
not yet voted for a Fallback Recovery Proposal for r−1
or sent Tr−1.

V. DISCUSSION

We now elaborate on Chained Moonshot’s design.

A. Asynchronous Agreement

We observe that Chained Moonshot’s rules for voting,
locking and committing enable processes to participate
in consensus without possessing the full blockchain. This
makes it particularly useful for systems that dynamically
change the membership of V . It likewise makes Chained
Moonshot well-suited for application in systems that
decouple transaction ordering, delivery and execution.
For instance, this property improves the performance
of the optimised protocol discussed in Section VI as
it allows the block synchronisation subprotocol and
consensus to run in parallel when ordering is decoupled
from execution.

B. Externally Verifiable Blockchain

An externally verifiable blockchain is one that en-
ables processes outside of the validator set that know
the membership of this set and the public keys of its
constituents to verify that a given block is a part of the
canonical blockchain by way of a Commit Certificate.
We propose two different constructions for Chained
Moonshot Commit Certificates.

If the implementation of Chained Moonshot persists
all finalised blocks and their QCs then a validator can
construct a Commit Certificate for Br without any
modifications to the protocol by aggregating:

1) The blocks forming the subsequence of the
blockchain from Br to Bs, Bs+1 such that:
• Bs and Bs+1 are proposed in rounds s and s+1

respectively,
• s ≥ r, and;
• Bs is the parent of Bs+1.

2) The QC for Bs+1.
This construction proves that Br is an ancestor of a
block that satisfied the Chained Moonshot Commit Rule,
namely Bs.

10

Alternatively, the system could generate Commit Cer-
tificates by performing an additional round of f + 1-
threshold agreement for each finalised block. For exam-
ple, a validator could broadcast its signature on each
block that it commits (along with any other data that the
implementer wishes to use to distinguish this message
from a Prepare message) and aggregate f + 1 such
signatures to form a Commit Certificate. Under this
construction, the Commit Certificate guarantees that at
least one honest process has committed the related block,
so the Safety and Liveness properties of the system
ensure that every other honest process will eventually
do the same.

C. QC Broadcasting

As mentioned in Section IV, Chained Moonshot re-
quires processes to broadcast all QCs that they observe in
order to preserve Liveness. Without this rule, the current
protocol would otherwise be vulnerable to the following
attack from the adversary:

Suppose that all honest processes are in round r,
having entered r via QCr−2. Suppose also that Lr−1

was Byzantine and multicasted a valid Normal Proposal
to only f + 1 honest processes. These f + 1 honest
processes therefore will vote for the related Br−1, giving
the adversary control over QCr−1. The adversary can
then selectively deliver this QC to a set A of up to f
honest processes, causing them to enter r + 1 while the
remainder, say B, remain behind in r. Subsequently, if
the adversary continues to withhold QCr−1 from them
then B will eventually send Tr−1. However, if this
occurs more than 2∆ before GST then the processes
in A will garbage collect their Timeout messages for
r − 1 and will no longer send Tr−1 upon observing the
f + 1 or more Tr−1 messages from their peers in B.
Consequently, if the Byzantine processes remain silent,
then B will remain permanently stuck in r.

This attack can be mitigated by removing the garbage
collection logic for Timeout messages from the protocol.
However, removing this logic would require a different
proof for Lemma 7, which would in turn affect later
lemmas also. Without both garbage collection and QC
broadcasting, the lower bound on τ derived in Sec-
tion VII would likely increase and it is not immediately
clear that Liveness would remain intact. Moreover, we
initially added these rules in the hope of arriving at
a protocol with bounded memory requirements. We
are still exploring this possibility so do not consider
removing them to be a useful solution at this time. We
will update this paper with our findings when we have
completed the relevant proofs.

D. Fallback Recovery

As mentioned in Section III, Moonshot’s key inno-
vation is optimistic proposal, which allows the Prepare
and Propose phases of successive rounds to proceed
in parallel under normal conditions. This necessarily
requires leaders to propose optimistically and assume
that the proposal of their predecessor will become certi-
fied. However, this is not guaranteed. The adversary can
leverage its control of the network and the Byzantine
processes to cause a leader to propose optimistically
whilst preventing the certification of the parent of its
proposal and by extension, of the proposal itself.

Chained Moonshot neutralises this attack vector by
allowing a leader to replace its optimistic Normal Pro-
posal with a fully-justified Fallback Recovery Proposal.
This is facilitated by the Chained Moonshot Lock and
Normal Vote rules. The former ensures that if an honest
process sends Tr then it does not lock Br and the latter
that if an honest process is not locked on Br then it
will not vote for Br+1 if Br ⇐= Br+1. Consequently,
if Lr+1 observes TCr after optimistically such a Br+1,
then it can infer that at least f+1 honest processes must
not have observed QCr in time to lock it and therefore
will not vote for Br+1. This allows Lr+1 to use TCr

to justify making a new proposal with a parent that it
knows to be certified.

However, even this measure is not enough to ensure
that every honest leader that proposes during a period
of synchrony is able to produce a certified proposal.
Consider Lr, the first such leader to propose in a given
sequence of leaders. If Lr proposes a Fallback Recov-
ery Proposal, then this proposal will become certified
(see the proof for Lemma 10). Similarly, if all honest
processes lock QCr−1, then the Chained Moonshot QC
Processing Rule ensures that Lr will extend this proposal
with Br−1 ⇐= Br, which will subsequently become
certified. However, because Lr−1 is Byzantine the adver-
sary can deliver Br−1 to the honest processes just before
their round timers expire. Variability in network latency
all but guarantees that the round timers of the honest
processes will differ by some small margin (these bounds
are examined more precisely in Section VII), making it
possible for the adversary to ensure that at least one
honest process receives QCr−1 before sending Tr−1 in
order to prevent TCr−1 from forming if the Byzantine
processes remain silent. Furthermore, it can ensure that
the remaining honest processes receive QCr−1 after they
send Tr−1, preventing them from locking the QC and
thus from voting for Br−1 ⇐= Br. This requires very
precise timing on the behalf of the adversary, but is

11

possible nevertheless.
Importantly though, in order to execute this attack the

adversary necessarily causes Br−1 to become certified.
In the worst case, only one honest process will have
locked QCr−1, but all will have observed it and thus
will report it in any Timeout messages that they send
for r or greater, ensuring that every TC for r or greater
will include this QC. Therefore, the inevitable Fallback
Recovery Proposal made by Lr+1 will necessarily extend
the proposal of Lr−1.

Consequently, if Chained Moonshot is implemented
with a round-robin leader election function then these
guarantees together ensure that every honest process will
commit at least 2f +1 blocks for every n rounds of the
protocol, at least f + 1 of which are guaranteed to be
honest. We provide a rigorous proof of this claim in
Section VII.

E. Round Expiry

We use the set E to help preserve liveness. As defined
in Table I, E tracks all of the rounds that an honest
process v considers to have expired but has not yet
garbage collected. This prevents the following liveness
attack, which would be possible if the algorithm instead
only tracked the highest round for which v had sent a
Timeout message:

Suppose that QCr−2 does not exist and that the
adversary causes an honest process to enter a round r via
TCr−2, the highest round of any honest process, at least
τ before GST begins. This enables it to deliver f + 1
Tr−1 to an honest process in some lower round before it
sends Tr−2, which Lemma 7 proves is only guaranteed
to occur before 2∆ after GST. Consequently, if we say
that our process should not send Tr−2 because it has
already sent Tr−1, then if the Byzantine processes do
not send their Tr−2 messages to the remaining honest
processes and QCr−2 does not exist, then the remaining
honest processes will never be able to construct TCr−2

and will become permanently stuck in r − 2.

F. Timeout Sync

Per Algorithm 2, an honest process will not trigger
the Timeout Sync Rule for r if it has already observed
QCr. Without this requirement, the adversary can violate
the Safety of the protocol (specifically, Lemma 2 will
not hold) by causing two different proposals to become
certified for r + 1 as follows:

Suppose that network is in an asynchronous interval,
meaning that the adversary can delay select messages
arbitrarily. Suppose that the adversary delivers both QCr

and a valid Normal Proposal containing a Br+1 that

extends the certified Br, to up to 2f honest processes
such that they all broadcast Prepare votes for Br+1. The
adversary can now construct QCr+1 and wait for the
honest processes still in r to eventually send Tr. Sub-
sequently, it can also cause the f Byzantine processes
to send Tr messages to the honest processes in r + 2.
Without the current restriction, this would cause these
processes to trigger the Timeout Sync Rule and send Tr

messages of their own, giving the adversary control of
TCr. Therefore, if Lr+1 is either honest and still in r+1,
or if it is Byzantine, then the adversary can cause it to
propose a Fallback Recovery Proposal containing B′

r+1.
The current Fallback Vote Rule will allow the honest
processes in r+2 to vote for this proposal since it does
not check if the process has already voted for a Normal
Proposal for the same round, enabling the adversary to
create competing QCs for r + 1.

G. TC Broadcasting

Although the current Timeout Sync Rule is sufficient
under our theoretical model, it might not be suitable
for a practical implementation. The upper bound on the
network delay, ∆, is difficult to approximate in practice.
If this value is set too low in an actual implementation
then it is possible that a process will garbage collect its
Tr messages before it is able to successfully deliver Tr

to some of its honest peers. Should this occur then it is
possible that these peers might never be able to construct
TCr and thus the protocol might halt. Consequently, we
observe that it might be more practical to use a different
mechanism for round synchronisation in the Fallback
Path.

A simple alternative would be to have processes
broadcast TCs in the same manner that they do QCs.
However, this would give Chained Moonshot an over-
all network-wide communication complexity of O(n3),
since a TC must contain O(n) information in order to
prove that qc′ was indeed the highest QC submitted by
the processes whose Timeout messages were used to
construct TCr. Such a high communication complexity
may be undesirable though, so we also propose another
alternative.

Instead of broadcasting TCr, we speculate that valida-
tors should be able to unicast it to Lr+1 and multicast
a threshold signature on r to their remaining peers.
Additionally, the Timeout Sync Rule should be modified
to cause a validator to send Tr whenever it observes
such a threshold signature for r without having already
observed QCr. The Liveness proofs given in Section VII
rely on honest processes being able to synchronise
to the same round within a tight interval after GST.

12

Having processes multicast the threshold signature on
r would actually reduce the current bound from 2∆ to
∆. Likewise, requiring the processes to unicast TCr

to Lr+1 and the updated Timeout Sync Rule together
should ensure that if any process observes a threshold
signature on r derived from Tr messages then Lr+1 will
eventually observe TCr. We previously mentioned an
optimisation that prevents the adversary from spamming
validators with messages for higher rounds by includ-
ing threshold signatures on r inside Normal Proposal,
Prepare and Timeout messages. We observe that if these
two optimisations are implemented together then each
type of threshold signature on r should also cover
a unique domain identifier to distinguish them from
one another and thus to preserve the latter conclusion
regarding Lr+1’s guaranteed observation of TCr. We
name this optimisation speculative because we have yet
to complete formal proofs showing that the proposed
changes are sufficient to preserve the properties of the
current protocol.

H. Complexity Analysis

The network-wide asymptotic communication com-
plexity of the Chained Moonshot protocol depends upon
the method employed to aggregate Prepare votes into
QCs. If a QC is simply a collection containing a quorum
of Prepare messages, which we assume are of size O(1),
then its size is O(n). In this case, Chained Moonshot’s
broadcasting of QCs incurs a cost of O(n3), since all
n processes are required to send O(n) sized messages
to each of their n peers. However, it is well-known
that signatures can be compressed using threshold cryp-
tography. Therefore, if QCs are instead constructed by
aggregating a quorum of signature shares into a single
quorum threshold signature, then their size reduces to
O(1), reducing the cost of QC broadcasting to O(n2).

Comparatively, threshold cryptography cannot be em-
ployed to reduce the size of TCs. As previously men-
tioned, this is because a TC must prove that its qc′

was indeed the highest QC submitted by the processes
whose Timeout messages were used to construct the TC
in order for the parent of any related Fallback Recovery
Proposal to be justified. As an aside, if TCs were not
required to include this proof then the current rule for
voting on Fallback Recovery Proposals would be unsafe:
A Byzantine proposer could initiate a fork by making the
parent of its Fallback Recovery Proposal arbitrarily far
in the past. Therefore, since TCs must always contain
such a proof, their size is necessarily at least O(n).
Consequently, the Fallback Recovery Proposal action
also incurs a cost of O(n2). By contrast, the Normal

Proposal action has a complexity of only O(n), assuming
that blocks are O(1) in size.

We assume that Prepares and Timeouts are also O(1)
in size. Thus, since Chained Moonshot requires pro-
cesses to broadcast Prepare and Timeout messages, the
corresponding actions incur a communication complex-
ity of O(n2).

Therefore, overall, Chained Moonshot exhibits an
communication complexity of O(n2) or O(n3) per round
in both the Normal and Fallback Path, depending on
how QCs are constructed. However, we should also
consider the worst-case communication cost required for
Chained Moonshot to commit a new block. Assume for
a moment that our previous claim that if L is a round-
robin leader election function then every honest process
will commit at least 2f + 1 blocks for every n rounds
of the protocol is true. Therefore, by extension, if L
is deterministically fair then every honest process will
commit at least k(2f+1) blocks for every kn rounds of
the protocol. Consequently, since k(2f + 1) and kn are
both O(n), if L is deterministically fair then Chained
Moonshot produces O(n) blocks that will eventually be
committed by every honest process, every O(n) rounds.
Thus, it still requires only O(n2) communication in the
worst case per decision, assuming O(1) sized QCs.

VI. CHAINED MOONSHOT WITH EFFICIENT VOTING

We previously observed that the communication over-
head of the preceding Chained Moonshot protocol can
be reduced by including block digests in Prepare and
QC messages rather than the blocks themselves. Imple-
menting this optimisation requires several modifications
to the specification provided in Section IV.

A. Core Protocol Modifications

Firstly, rather than containing blocks, Prepare and QC
messages should instead contain both the digest and
round number of the related block. Furthermore, if QCs
are also made to include the digest of the parent of the
related block then the semantics of the tryCommit
function can remain unchanged. Otherwise, QCs may
omit this field if tryCommit is provided with access to
certified blocks and is also invoked as each new certified
block arrives. Most significantly though, implementing
this optimisation requires the addition of a synchroni-
sation subprotocol to ensure that the protocol maintains
the Liveness SMR property.

B. Block Synchronisation Protocol

It is possible for processes running Chained Moonshot
to fall behind their peers due to either normal network

13

asynchrony or the adversary deliberately delaying mes-
sages. Our assumption of perfect communication chan-
nels and the requirement that honest leaders broadcast
their proposals together ensure that all blocks sent by
honest leaders will eventually be delivered to all honest
validators. However, perfect channels are insufficient to
ensure that every validator eventually receives every
finalised block when Prepare messages and QCs do not
contain the related block. This is because it is still
possible for Byzantine leaders to censor a subset of
the honest validators when broadcasting their Proposals.
Accordingly, we now present a simple Block Synchro-
nisation Protocol that ensures that if one honest process
commits a block then all others will eventually do the
same.

A process v initiates the Block Synchronisation Proto-
col when it becomes aware of the existence of a certified
block that it has yet to receive. This first occurs when v
processes a QC for a block B that it does not have,
in which case it multicasts a Sync Request message
containing the digest of B to 2f + 1 of its peers. Any
honest peer of v that receives such a Sync Request first
ensures that the sender has not exceeded the agreed upon
rate-limit for Sync Requests before checking its storage
for the requested block. If it has the block the server then
unicasts a Sync Response containing B to the sender.
The existence of the QC for B implies that at least
f +1 honest processes received B, so since n = 3f +1,
v is guaranteed to eventually receive B from at least
one honest peer. After receiving B, v authenticates the
Sync Response by confirming that it had previously
requested B and then processes B. If v discovers that it is
missing the parent of B while processing B then it sends
another Sync Request, repeating the prior steps until
it has processed all blocks between its last committed
block and B. Importantly, the safety proofs given in
Section VII show that B is guaranteed to be a descendent
of v’s last committed block as long as the Byzantine
threshold remains intact, so this protocol is guaranteed
to eventually terminate.

C. Optimisations and Analysis

We observe that the 2f + 1 multicast of the Sync
Request message can be reduced to an f + 1 multicast
when the sender has the related QC in its possession,
if the QC identifies it contributors. This is because the
Chained Moonshot Voting Rule ensures that each honest
contributor is guaranteed to possess the related block.

The presented Block Synchronisation Protocol has a
best-case latency of 2δ after GST and communication
complexity of Θ(f + 1) messages per block, assuming

a QC implementation that preserves the identities of the
voters. However, it is possible to achieve a communi-
cation complexity of Ω(1), O(f + 1) per block in the
same setting by having v contact its peers one at a time.
In this case, the latency remains 2δ in the best case but
increases to (f + 1)∆ in the worst case.

The communication complexity of the full synchro-
nisation process can be further optimised by having v
request multiple blocks from the same process once it
has identified an honest server. In this variant, v follows
the previously described protocol for the first missing
block. After receiving this block from vs, v then directs
all future Sync Requests to vs until it fails to receive
a response within some predetermined timeout interval,
in which case it repeats the original protocol until it
receives the requested block from s′′, and so on until
it has synchronised all of its missing blocks.

The introduction of this subprotocol to Chained Moon-
shot requires the network to keep a record of processed
blocks so that they can be served to desynchronised
or new validators when necessary. We observe that the
long-term costs of this requirement can be mitigated
by offloading the responsibility of maintaining the full
history to external archive nodes, allowing the validators
to maintain only the most recent history.

VII. CORRECTNESS PROOFS

We now present correctness proofs for Chained Moon-
shot and show that our protocol satisfies the Safety
and Liveness properties of SMR from Definition 3.
These proofs cover both the basic protocol presented in
Section IV and the variant with efficient voting discussed
in Section VI.

We first recollect the rules of Chained Moonshot in
Tables III and IV before establishing some new defini-
tions to aid us in the proofs.

Definition 5 (Canonical Block). Br is canonical iff every
certified block Br′ with r′ ≥ r has Br ⇐=∗ Br′ .

Definition 6 (Local Direct-Commit). Br is locally
direct-committed (LDC) by a process v when v executes
the Two-Chain Commit Rule on Br.

Definition 7 (Local Commit). Br is locally committed
(LC) by v when v LDCs Br′ such that Br ⇐=∗ Br′ .

Definition 8 (Honest Majority Lock). Br is honest-
majority locked (HML) iff there are at least f+1 honest
processes that lock the QC for Br.

Definition 9 (Universal Lock). Br is universally locked
(UL) iff all honest processes lock the QC for Br.

14

TABLE III
RULES OF CHAINED MOONSHOT NORMAL PATH FOR v ∈ V

Garbage Collection. A process v garbage collects Prepare,
Proposal and Timeout messages for r′ < r per the semantics
of the cleanup function upon entering r+1. It likewise garbage
collects QCs and blocks for r′ ≤ r per the semantics of the
commit function upon appending Br to Bv .
Lock. A process v locks a block Br , meaning it sets qcl to the
QC for Br upon receiving this QC, only if it is in round r + 1
or lower, it has not sent Tr and r > qcl.B.r.
Proposal: Normal. Whilst in r, v broadcasts a Normal Proposal
N(Br) that extends the first Normal Proposal N(Br−1) that it
receives from Lr−1, if it is Lr .
Proposal: QC Extension. If v observes QCr−1 whilst in round
r′ ≤ r, is Lr and has not yet created either a Fallback Recovery
Proposal for r or a Normal Proposal for r that references the
block certified by QCr−1 as its parent, then it creates a Normal
Proposal extending the block certified by this QC.
QC Sync. Upon observing a QC for a given round for the first
time, v broadcasts it.
Round Transition: Normal. v enters r + 1 from r′ < r + 1
after observing a QC for r − 1.
Two-Chain Commit. Upon receiving QCs for both Br and its
child block Br′ such that r′ = r + 1, v schedules Br and its
ancestors for commit per the semantics of the commit function
defined in Table II.
Vote Broadcast. v broadcasts all votes.
Vote: Normal. Whilst in r+ 1 a process v sends a Prepare vote
for a Normal Proposal N(Br) received from Lr with Br−1 ⇐=
Br , only if it has neither sent Tr nor already voted for a Normal
Proposal for r, and it is locked on the QC for Br−1.

A. Safety

Lemma 1 (No Timeout Before Lock). If an honest
process v locks QCr then it must not have sent Tr before
doing so.

Proof: Suppose that v locks QCr after sending Tr.
Therefore, by the Timeout Rule, v must have added the
round identifier of r to E upon sending Tr. Moreover,
by the Garbage Collection Rule, v cannot remove r from
E until it has spent at least 2∆ in r + 2. Consequently,
since the Lock Rule requires v to be in r + 1 or lower
in order for it to lock QCr, v must have had r in E
when attempted to lock QCr. However, the Lock Rule
also requires that v must not have r in E, meaning
that it would have failed to lock QCr, contradicting the
assumption that it did so.

We use the term Normal QCr in the informal name
of Lemma 2 to refer to a QC for a Normal Proposal for
round r.

Lemma 2 (TCr−1 implies no Normal QCr). If TCr−1

exists then no Normal Proposal for r will ever become
certified.

Proof: Suppose that TCr−1 exists and QCr certi-

TABLE IV
RULES OF CHAINED MOONSHOT FALLBACK PATH FOR v ∈ V

Proposal: Fallback. Upon observing TCr−1 whilst in r′ ≤ r, v
creates a Fallback Recovery Proposal F (Br) with B′′ ⇐= Br ,
where B′′ is the block certified by the QC with the highest round
number included in TCr−1, only if it is Lr .
Proposal: Fallback Extension. If v receives a Fallback Recovery
Proposal F (Br−1) from Lr−1 with B′′ ⇐= Br−1 whilst
in round r, then it creates a Normal Proposal N(Br) with
Br−1 ⇐= Br only if F is justified by a well-formed TCr−1,
B′′ is the block certified by the QC with the maximum round
number included in F , v is Lr and F is the first Fallback
Recovery Proposal for r − 1 that satisfies these conditions.
Round Transition: Fallback. v enters r + 1 from r′ < r + 1
after observing a TC for r − 1.
Timeout. v resets its round timer upon entering round r and
broadcasts Tr−1 if it remains in r for τ where τ > 4∆, without
otherwise broadcasting this message.
Timeout Sync. If v observes f+1 Timeout messages for r before
garbage collecting the Tr messages that it has received and while
having yet to append a block for r or higher to Bv and not having
QCr in U , then it broadcasts Tr if it has not already done so.
Likewise, upon observing TCr and having not yet sent Tr , v
broadcasts Tr .
Vote: Fallback. Whilst in r+1 v sends a Prepare vote for a block
Br with B′ ⇐= Br received in a Fallback Recovery Proposal
F from Lr , only if it has neither sent Tr nor already voted for a
Fallback Recovery Proposal for r, F is justified by TCr−1 and
B′ is the block certified by the QC with the maximum round
number included in TCr−1.

fies a Normal Proposal containing the block Br. By the
Normal Vote Rule, the existence of QCr implies that a
group of at least f + 1 honest processes, say H1, must
have locked the parent of Br, which in turn must have
been proposed for r− 1. Thus, by the Lock Rule, these
processes must have observed QCr−1 whilst in round r
or lower. Moreover, since TCr−1 exists, at least f + 1
honest processes must have sent Tr−1 messages. Let H2

contain the first f+1 honest processes to send Tr−1. By
quorum intersection, H1 and H2 must have at least one
member in common. Furthermore, by Lemma 1, none of
the processes in H1 can have sent Tr−1 before locking
QCr−1. Therefore, at least one honest process, say v,
must have sent Tr−1 after locking QCr−1. However,
since the Normal Round Transition Rule would have
caused v to enter r + 1 when it observed QCr−1 if it
had not already entered a higher round, v must have
sent Tr−1 after entering r + 1 or higher. Consequently,
it cannot have sent Tr−1 as a result of the Timeout Rule
and thus must have done so due to the Timeout Sync
Rule. Moreover, because v is a member of H2, it cannot
have sent Tr−1 after observing TCr−1, because TCr−1

cannot exist until the members of H2 have sent their
Tr−1 messages. Therefore v must have sent Tr−1 after
observing f + 1 Tr−1 messages without having either

15

appended a block for r′ ≥ r − 1 to its local blockchain
or having QCr−1 in U . However, recall that a process
is required to add QCr−1 to U upon observing it for the
first time, and that it may only remove it from U upon
appending a block for r′ ≥ r−1 to its local blockchain.
Hence, since we have concluded that when v sent Tr−1

it must have both already observed QCr−1 and not
appended a block for r′ ≥ r− 1 to its local blockchain,
v must have had QCr in U when it broadcasted Tr−1.
However, this violates the Timeout Sync Rule and thus
contradicts the definition of v as being honest.

Lemma 3 (Round Safety). Suppose two processes vi
and vj observe QCs for blocks Bi and Bj , respectively.
If Bi.r = Bj .r then Bi = Bj .

Proof: Suppose Bi.r = Bj .r and Bi ̸= Bj . By
the Vote Rule and the requirement that QCs be derived
from a quorum of valid Prepare messages for the same
block, the existence of the QCs for Bi and Bj implies
that at least f + 1 honest processes voted for each of
them in Bi.r + 1. Furthermore, since there are only
2f + 1 honest processes, at least one of these processes
must have voted for both Bi and Bj . However, if Bi

and Bj were both proposed as Normal Proposals or
both as Fallback Recovery Proposals then because the
rules for voting only allow an honest process to vote
for one proposal of each type per round, no honest
process could have voted for both blocks. Alternatively,
if Bi were proposed in a Normal Proposal N and Bj

in a Fallback Recovery Proposal F , or vice-versa, then
the Vote Rule allows honest processes to vote for both
blocks. However, since the well-formedness rule for
Fallback Recovery Proposals requires that F be justified
by TCr−1, by Lemma 2, N.B will never be certified.
Therefore, Bi = Bj .

Lemma 4 (Sequential Progress). If an honest process
v enters round r then at least one honest process must
have already entered r − 1.

Proof: The Round Transition Rules require v
to observe either QCr−2 or TCr−2 in order to enter
r. Furthermore, at least f + 1 honest processes must
vote towards each of these certificates. In the case of
QCr−2, the Normal and Fallback Vote Rules require
these processes to enter r− 1 before they may do so. In
the case of TCr−2, the Timeout and Timeout Sync Rules
together imply that at least one honest process must enter
r − 1 before any honest process can send Tr−2. Thus,
in either case, v can only enter r if at least one honest
process has already entered r − 1.

Lemma 5 (Non-Decreasing Max QC). If an honest
process v adds QCr to U then every Timeout message
that it sends after doing so contains a QC for a round
r′ ≥ r.

Proof: Recall that the Garbage Collection Rule
only allows v to remove QCr from U upon appending
a block for r′′ ≥ r to Bv. Therefore, by the Two-
Chain Commit Rule, v must observe QCs and QCs+1

such that s ≥ r in order to remove QCr from U .
Thus, v would have added both QCs and QCs+1 to
U before removing QCr from U . Consequently, since
s ≥ r, every subsequent invocation of maxQC(U) will
return a QC for r or higher. Therefore, since the Timeout
Rule requires v to include maxQC(U) in every Timeout
message that it sends, every Timeout message sent by v
after adding QCr to U will contain a QC for r or higher.

Lemma 6 (LDC is Unique). If an honest process might
LDC Br then for every certified block Br′ such that
r′ ≥ r, Br ⇐=∗ Br′ .

Proof: We prove this claim by induction on the
round number. Lemma 3 proves that if r′ = r then Br′ =
Br and thus Br ⇐=∗ Br′ . Consider the case when r′ >
r:

Base Case: r′ = r + 1. Once again, Lemma 3
proves that only one block can become certified in a
given round. Therefore, because Br′ is certified for r+1
and Br may be LDC, it follows from Definition 6 and
the Two-Chain Commit Rule that Br ⇐=∗ Br′ .

Inductive Step: We assume that the lemma holds
up to round k such that k > r and complete the
proof for r′ = k + 1. Therefore, if Bk ⇐= Br′ then
Br ⇐=∗ Br′ , so the only case that remains is when
Br′′ ⇐= Br′ such that r′′ < r. Recall that the Normal
Vote Rule only allows honest processes to vote for
a Normal Proposal if its parent was proposed in the
previous round. Therefore, because Br′ is certified and
since r′′ < r < r′ − 1, Br′ must have been proposed
as a Fallback Recovery Proposal. We now show that
the TC justifying this Fallback Recovery Proposal will
necessarily contain QCr or higher, contradicting the
requirement that r′′ < r.

By Definition 6 and the Two-Chain Commit Rule, an
honest process will not LDC Br unless it observes a
QC for Br+1 such that Br ⇐= Br+1. Therefore, since
an honest process might LDC Br, QCr+1 must exist.
Consider the type of Br+1.

If Br+1 were a Normal Proposal then, because it
is certified and thus at least f + 1 honest processes

16

must have voted for it, by the Normal Vote Rule, these
processes must have locked QCr. Let H represent the
first f +1 honest processes to vote for Br+1. Therefore,
by the Lock Rule, H must have observed QCr whilst in
round r+1 or lower and hence cannot have broadcasted
Tr+1 as a result of the Timeout Rule before they did
so, which only allows a process to do so whilst in
r + 2. Therefore, if any process in H sent Tr+1 before
observing QCr, it must have done so due to the Timeout
Sync Rule. However, by the Normal Vote Rule, H can
only have voted for Br+1 if they did not have the round
identifier of r + 1 in E. Therefore, since a process is
required to add the identifier of r + 1 to E when it
sends Tr+1, and because the Garbage Collection Rule
only allows it to remove this identifier from E after
having spent at least 2∆ in r+3, because these processes
must have voted for Br+1 whilst in r+2, none of them
can have sent Tr+1 before observing QCr.

Alternatively, if Br+1 were a Fallback Recovery Pro-
posal then, by the Fallback Vote Rule, the TCr justifying
this proposal must have contained QCr as its highest
QC. Therefore, since H must have voted for Br+1 in
order for it to be certified, by the Fallback Vote Rule,
every process in H must have done so whilst in r + 2
and without having the round identifier of r + 1 in
E. Therefore every process in H must have observed
QCr whilst in r + 2 or lower. Thus, as reasoned in
the former case, they all must also have observed QCr

before sending Tr+1.

In either case, H must have observed QCr before
sending Tr+1. Thus, by Lemma 5, any Timeout message
for r + 1 sent by these f + 1 honest processes will
necessarily contain a QC for round r or higher. There-
fore, because there are only 2f + 1 honest processes,
n = 3f + 1 and since TCs must be constructed from
at least 2f + 1 Timeout messages, every TC for r + 1
will contain a QC for round r or higher. Therefore,
since r′ > r + 1 and because Br′ is necessarily a
Fallback Recovery Proposal, if Br′ = r+2 then r′′ ≥ r,
contradicting the earlier conclusion that r′′ < r.

Moreover, if every Timeout message sent by H for
every round greater than r + 1 is also guaranteed to
contain a QC for r or higher, then we can extend this
conclusion to every possible value of r′. Suppose, then,
that some honest process v ∈ H sent a Timeout message
for r∗ > r + 1 containing a QC for a round lower than
r. From our earlier conclusions, v must have sent this
message before observing QCr and whilst in r + 2 or
lower. Therefore, v cannot have sent Tr∗ as a result of
the Timeout Rule and thus must have done so due to the

Timeout Sync Rule. Consequently, since this implies that
at least f + 1 Tr∗ messages must already have existed
when v sent Tr∗ , the Timeout and Timeout Sync Rules
together imply that at least one honest process, say v′,
must have spent τ in r∗ +1 before this time. Therefore,
v′ must have entered r∗ + 1 whilst all of the processes
in H were still in r + 2 or lower and before they sent
either Prepare messages for Br+1 or Tr+1. Moreover,
since Br+1 must be certified, by Lemma 3, no QCr+1

can exist before H vote for Br+1. Therefore, no honest
process can have entered r + 3 via the Normal Round
Transition Rule before H voted for Br+1. Likewise,
neither can any honest process have entered r + 3 via
the Fallback Round Transition Rule before at least one
honest process in H sent Tr+1, since at most 2f Tr+1

messages can exist before this time. Consequently, since
no honest process can have entered r + 3 until one of
these two events occurs, by Lemma 4, neither can any
honest process have entered a round after r+3 before this
time. However, this contradicts our earlier conclusion
that v′ must have entered r∗ +1 ≥ r+3 before both of
these events.

Therefore, Br ⇐=∗ Br′ for every certified block Br′

such that r′ ≥ r.

Corollary 1 follows from Lemma 6 and the fact that
every LDC block is necessarily certified.

Corollary 1 (Consistency). If Br and Br′ are both LDC
then either Br ⇐=∗ Br′ or Br′ ⇐=∗ Br.

Theorem 1 (Safety). For every run R ∈ RP , for each
pair of honest processes (vi, vj) ∈ V × V , at each
moment during R either Bvi

⪯ Bvj
or Bvj

⪯ Bvi
.

Proof: Let Bvi = B1
0 ⇐=∗ B1

s and Bvj =
B2

0 ⇐=∗ B2
t . Then for every height 0 ≤ l ≤ s, we

have that vi LC B1
l and for every height 0 ≤ h ≤ t,

vj LC B2
h. Therefore, from Definition 7, we have that

B1
s and B2

t are LDC. Therefore, from Corollary 1 we
have that B1

s ⇐=∗ B2
t or B2

t ⇐=∗ B1
s . Thus, either

Bvi ⪯ Bvj or Bvj ⪯ Bvi at every moment of every
R ∈ RP .

B. Liveness

We recall that our assumption of perfect commu-
nication channels implies that all messages between
the processes in V are eventually delivered. Moreover,
since we also assume that these channels are partially
synchronous, the upper bound on this delivery during
each synchronous period during the protocol run is ∆.
For the sake of the following proofs, we reason in the

17

context of one such synchronous period, the beginning
of which we denote by either GST or tg . We carry these
assumptions and definitions forward in the following
proofs.

We begin by showing that all honest processes are
guaranteed to continue to enter new rounds after GST.

Lemma 7 (Round Sync). Let r be the highest round of
any honest process at time t ≥ tg . All honest processes
enter r or greater before t+ 2∆.

Proof: Let v be an honest process in r at t. Recall
that the Round Transition Rules allow a process to enter
round r only if it observes QCr−2 or TCr−2. In the
former case, the QC Sync Rule ensures that v would have
broadcasted QCr−2 just before it entered r. Therefore,
all honest processes will observe this certificate and enter
r via the Normal Round Transition Rule before t + ∆,
if they do not enter a higher round first.

In the latter case, the existence of TCr−2 implies that
at least f + 1 honest processes must have broadcasted
Tr−2 before v entered r and thus before t. If all honest
processes broadcast Tr−2 before t+∆ then, since there
are 2f + 1 honest processes and because TCs require
2f +1 Timeout votes to construct, all processes will be
able to construct TCr−2 before t + 2∆ and thus will
enter r by the Fallback Round Transition Rule by this
time.

Suppose, then, that some honest process v′ does not
broadcast Tr−2 before t+∆. However, v′ is guaranteed
to observe the aforementioned f + 1 Tr−2 messages
before this time. Therefore, by the Timeout Sync Rule, v′

must have QCr−2 in U upon observing these messages,
or it must either have appended a block for r − 2 or
higher to Bv′ , or garbage collected its Tr−2 messages
before this time. In the first case, since v′ can only have
added QCr−2 to U after observing it, it would also have
broadcasted it, so the proof for this case has already
been covered. Likewise, in the second case, by the Two-
Chain Commit Rule, v′ must have observed QCs for two
consecutive rounds greater than r−2 in order to append
Br−2 or higher to its local blockchain, so this case has
also been covered.

Suppose, then, that v′ had garbage collected the Tr−2

messages that it had received before t + ∆. Therefore,
by the Garbage Collection Rule, v′ must have spent at
least 2∆ in some round r′ ≥ r before t+∆. However,
this implies that v′ entered r′ no later than t − ∆,
contradicting the definition of r as being the highest
round of any honest process at t if r′ > r. Therefore,
r′ = r. Furthermore, v′ cannot have entered r via
TCr−2, otherwise the Timeout Sync Rule would have

caused it to broadcast Tr−2, contradicting the assumption
that it does not do so. Therefore, v′ must have entered r
via QCr−2, which the QC Sync Rule once again ensures
all honest processes will observe before t+∆.

Lemma 8 (Certificate Progress). Let r be the highest
round of any honest process at time t ≥ tg . If τ > 4∆
then all honest processes observe a certificate for r′ ≥
r − 1 before t+ 4∆+ τ .

Proof: Suppose that some honest process fails to
observe a certificate for r′ ≥ r − 1 before t + 4∆ + τ .
Therefore, by the QC Sync Rule, no honest process may
observe a QC for r − 1 or greater before t + 3∆ +
τ . Furthermore, if all honest processes broadcast Tr−1

before t + 3∆ + τ then all processes will be able to
construct TCr−1 before t+4∆+τ , even if the Byzantine
ones remain silent.

Suppose, then, that some honest process v′ fails to
broadcast Tr−1 before t+3∆+ τ . Lemma 7 shows that
v′ will enter r or higher before t + 2∆. Therefore, the
Timeout Rule ensures that if v′ remains in r until t +
2∆+ τ then it will have broadcasted Tr−1 by this time.
However, since v′ must not send Tr−1 before t+3∆+τ
and because no honest process can observe a QC for
r − 1 or greater within the same interval, v′ must enter
rh > r via TCrh−2 before t + 2∆ + τ . However, if
rh = r+1 then v′ would have observed TCr−1 and the
Timeout Sync Rule would have caused it to send Tr−1,
contradicting the earlier conclusion that it must not do
so before t+ 3∆+ τ . Therefore, rh > r + 1.

Consequently, by Lemma 4 and because no honest
process may observe QCr−1 or greater before t+3∆+τ ,
at least one honest process, say v, must have entered r+1
via TCr−1 before v′ entered rh. More precisely, since v′

must enter rh via TCrh−2 ≥ TCr before t+2∆+τ and
because the Timeout and Timeout Sync Rules together
ensure that TCr cannot exist until at least one honest
process has spent at least τ in r + 1, v must have done
so before t+ 2∆. Likewise, because r is defined as the
greatest round of any honest process at t, v cannot have
entered r + 1 before t. Thus, v must enter r + 1 at tv
such that t < tv < t+ 2∆.

Therefore, by Lemma 7, v′ will enter r+ 1 or higher
before tv + 2∆ < t + 4∆. However, if τ ≥ 4∆ then
because no honest process can have observed a QC for
r−1 or greater before t+3∆+τ and neither can any such
process have entered r+1 before t, no honest process can
have spent τ in r+1 before tv+2∆ < t+4∆. Thus, TCr

cannot exist before this time and, by extension, neither
can any TC for any higher round. Consequently, since
v′ must enter r+1 or higher before this time, it must do

18

so via TCr−1, contradicting our earlier conclusion that
it must not observe this TC before t+ 3∆+ τ .

From Lemma 8, we have the following corollary.

Corollary 2 (Round Progress). If M > 4∆ + τ then
for every run R ∈ RP , for each synchronous interval
S ∈ CR(M), all honest processes continue to enter
increasing rounds during S.

We will assume that M > 4∆ + τ until we reach
Theorem 2. We now show that if an honest leader pro-
poses a Fallback Recovery Proposal after GST then this
proposal becomes canonical. For the following Lemmas,
let ti denote the time that the first honest process enters
round r + i.

Lemma 9 (Honest Proposals Arrive Before Timeout).
Let Lr be honest and suppose that GST had passed
before the first honest process entered r. If Lr proposes
and τ > 3∆ then all of its proposals reach all honest
processes before t1 + 3∆ and before any of them send
Tr.

Proof: By the Proposal Rules, Lr is only allowed
to propose whilst in r. Therefore, since Lemma 7 shows
that Lr will enter r + 1 or higher before t1 + 2∆, if
it proposes then it must do so before this time. Conse-
quently, because Lr is honest and so will broadcast its
proposal, if it proposes then all processes are guaranteed
to observe its proposal before t1 + 3∆. Furthermore,
since the Timeout and Timeout Sync Rules together
imply that at least one honest process must have spent at
least τ in r + 1 before any honest process can send Tr,
if τ > 3∆ then no honest process can have broadcasted
Tr before receiving Lr’s proposal.

Lemma 10 (Fallback Proposals Are Certified). Let Lr

be an honest leader and suppose that GST had passed
before the first honest process entered r. If Lr broadcasts
a Fallback Recovery Proposal and τ > 3∆ then all
honest processes observe a QC for this proposal before
t1 + 4∆.

Proof: Lr, being honest, would have sent the
same well-formed Fallback Recovery Proposal F to all
honest processes, and would only have created one such
proposal. Recall that aside from its well-formedness, the
validity of a Fallback Recovery Proposal relies only on
the state of the af , rc and E variables of its recipient.
Also recall that Lemma 9 proves that if τ > 3∆ then all
honest processes will receive F before they send Tr and
thus cannot have the round identifier of r in E when they
do so. Moreover, nor will any honest process have been

able to enter r+2 via TCr before this time. Furthermore,
by the premise, neither can any honest process have
entered r+2 before this time by observing a QCr for F ,
otherwise the proof would be complete. Moreover, since
F is necessarily justified by TCr−1, Lemma 2 proves
that neither can any honest process have entered r + 2
by observing a QCr for a Normal Proposal made by Lr.
Thus, by Lemma 4, no honest process can have entered
r′′ > r + 1 before receiving F . Consequently, every
honest process will have rc ≤ r + 1 and af < r upon
its arrival and will enter r + 1, if they have not already
done so, upon processing TCr−1. Therefore, if τ > 3∆
then by Lemma 9 and the Fallback Vote Rule, all honest
processes will vote for F before t1+3∆, so all processes
will observe a QC for this proposal before t1 + 4∆.

Lemma 11 (Honest Fallback Proposals Are Canonical).
Let Lr be an honest leader and suppose that GST had
passed before the first honest process entered r. If Lr

proposes Br as a Fallback Recovery Proposal and τ >
4∆ then either QCr will be UL before t1+4∆ or every
honest process will LDC a block Br′ with Br ⇐=∗ Br′

where r′ ≥ r before t1 + 5∆.

Proof: By Lemma 10, all honest processes will
observe a QC for Lr’s Fallback Recovery Proposal
before t1 + 4∆. Moreover, if τ > 4∆ then because
t1 is defined as the time that the first honest process
entered r+1, no honest process can have sent Tr before
observing QCr and thus no honest process can have the
round identifier of r in E.

Suppose that all honest processes were in r + 1 or
lower when they observed QCr. Therefore, the Normal
Round Transition Rule implies that they cannot have
locked a QC for a higher round before this time. Thus,
in this case, by the Lock Rule, all honest processes will
lock QCr thus making it, by Definition 9, UL.

Suppose, then, that some honest process v′ observed
QCr after entering rh > r+1 before t1+4∆. Therefore,
since we have already concluded that TCr cannot exist
before this time, Lemma 4 implies that neither can a
TC for any higher round. Thus, v′ must have entered rh
via QCrh−2. However, if rh = r + 2 then v′ must have
entered rh via QCr, contradicting the assumption that it
observed this QC after entering rh. Thus, rh > r + 2.
Therefore, by Lemma 4, at least one honest process
must have already entered r + 3 and, because TCr+1

cannot exist by this time, it must have done so via
QCr+1. Moreover, since TCr cannot exist by this time,
QCr+1 cannot certify a Fallback Recovery Proposal
and so must certify a Normal Proposal. Therefore, by

19

Definition 6 and the Two Chain Commit Rule, Br

satisfies the conditions required for LDC. Consequently,
by Corollary 1, every LDC block for r′ > r will have
Br ⇐=∗ Br′ . Furthermore, since at least f + 1 honest
processes must have locked QCr for QCr+1 to exist, the
QC Sync Rule guarantees that all honest processes will
observe both QCr and QCr+1 before t1+5∆. Therefore,
by the Two-Chain Commit Rule, every honest process
will LDC a block Br′ with r′ ≥ r and Br ⇐=∗ Br′ ,
before this time.

Thus, if Lr is honest and proposes a Fallback Recov-
ery Proposal then either Br will be UL before t1 + 4∆
or every honest process will LDC a block Br′ with
Br ⇐=∗ Br′ where r′ ≥ r before t1 + 5∆.

Lemma 12 (Honest Leaders Propose). If the first honest
process to enter r does so after GST, Lr is honest and
τ > 2∆, then Lr proposes.

Proof: Suppose that Lr does not propose. There-
fore, QCr will never exist so no honest process can
ever enter r + 2 via this certificate. However, recall
that we know from Corollary 2 that all honest processes
continue to enter increasing rounds after GST. Therefore,
by Lemma 4, at least one honest process must eventually
enter r+2 via TCr. However, the Timeout and Timeout
Sync Rules together ensure that TCr cannot exist until
at least one honest process has spent τ in r+1. Let v be
the first honest process to send Tr and let the time that v
enters r+1 be denoted tv . Therefore, since QCr cannot
exist at all and because TCr cannot exist before tv + τ ,
Lemma 4 implies that no honest process can have entered
r′ > r + 1 before tv + τ . Therefore, since Lemma 7
proves that all honest processes including Lr will enter
r+1 no later than tv +2∆, if τ > 2∆ and Lr does not
propose then Lr must enter r+1. However, if Lr enters
r + 1 via QCr−1 then the QC Extension Rule ensures
that it will create a Normal Proposal extending the block
certified by QCr−1, contradicting the assumption that it
does not propose. Similarly, if Lr enters r+1 via TCr−1,
then it will instead create a Fallback Recovery proposal
extending the block certified by the QC with the greatest
round included in TCr−1, once again contradicting the
initial assumption. Therefore, if τ > 2∆, the first honest
process to enter r does so after GST and Lr is honest,
then Lr proposes.

Lemma 13 (No QCr implies Fr+1). If no honest process
enters r+2 via QCr, τ > 4∆ and Lr+1 is honest, then
Lr+1 will create a Fallback Recovery Proposal.

Proof: Suppose that Lr+1 is honest, no honest
process enters r+2 via QCr and Lr+1 does not create a

Fallback Recovery Proposal. Therefore, by the Fallback
Proposal Rule, Lr+1 must not enter r + 2 via TCr.
However, because no honest process may enter r + 2
via QCr, Corollary 2 and Lemma 4 show that at least
one honest process must eventually enter r+2 via TCr.
Therefore, by Lemma 2, the existence of TCr implies
that QCr+1 cannot certify a Normal Proposal. Thus, if
TCr exists but Lr+1 does not enter r + 2 via it, then
QCr+1 cannot certify either a Normal Proposal or a
Fallback Recovery Proposal. Therefore QCr+1 cannot
exist. Consequently, no honest process will be able to
enter r′ > r + 2 before t2 + τ . However, by Lemma 7,
all honest processes are guaranteed to enter r + 2 or
higher before t2 + 2∆. Therefore, since τ > 4∆ and
because we have assumed that no honest process enters
r + 2 via QCr, all honest processes must enter r + 2
via TCr, contradicting the former conclusion that Lr+1

must not do so.

Lemma 14 (UL is LDC). If QCr is UL, τ > 4∆ and
Lr+1 is honest, then every honest process will LDC a
block Br′ with Br ⇐=∗ Br′ where r′ ≥ r before t2 +
3∆.

Proof: By Definition 9, QCr must be locked by all
honest processes. Therefore, by the Lock Rule, all honest
processes must observe QCr whilst in r+1 or lower and,
by Lemma 1, before sending Tr. Thus, TCr cannot exist.
Consequently, since by Corollary 2 all honest processes
will continue to enter new rounds after GST, the first
honest process to enter r + 2 must do so via QCr at
t2 < t1+ τ . Therefore, by the QC Sync Rule, all honest
processes will do the same before t2 + ∆. Moreover,
by Lemmas 9 and 12, Lr+1 will propose and all honest
processes will observe this proposal both before they
broadcast Tr+1 and before t2+2∆. More precisely, since
TCr cannot exist, by the QC Extension Rule, Lr+1 will
create a Normal Proposal extending the block certified
by QCr no later than the time that it observes this QC
and thus before t2 +∆ Thus, since all honest processes
will enter r + 2 when they lock QCr, by the Normal
Vote Rule, if they remain in r + 2 when they receive
Lr+1’s proposal then they will send a Prepare vote for it.
Consequently, all honest processes will observe QCr+1

before t2+3∆ and hence, having already observed QCr,
by the Two-Chain Commit Rule and Definition 6, will
LDC Br if they have not already LDC a block for a
higher round.

Lemma 15 (UL or LDC). Let Lr and Lr+1 be consec-
utive honest leaders and suppose that GST had passed
before the first honest process entered r. If τ > 4∆ then

20

either Br+1 will be UL before t2 + 4∆ or every honest
process will LDC a block for r′ ≥ r−1 before t2+5∆.

Proof: Suppose that QCr+1 does not become UL
and that at least one honest process does not LDC a block
for r′ > r before the aforementioned intervals. However,
Lemma 12 proves that Lr will propose. Moreover, if this
proposal becomes certified and is subsequently locked by
all honest processes, then Lemma 14 shows that every
honest process will LDC a block Br′ with Br ⇐=∗ Br′

where r′ ≥ r before t2 + 3∆.
Suppose, then, that at least one honest process, say v′,

fails to lock QCr. However, if this happens because no
honest process enters r+2 via QCr then, by Lemmas 11
and 13, either QCr+1 will be UL before t2+4∆ or every
honest process will LDC a block Br′ with Br ⇐=∗ Br′

where r′ ≥ r + 1 before t2 + 5∆. Therefore, at least
one honest process must enter r+2 via QCr. However,
Lemma 11 proves that if QCr were for a Fallback
Recovery Proposal then either all honest processes would
have locked QCr before t1+4∆, or every honest process
would LDC a block for r′ ≥ r before t1 + 5∆, so QCr

cannot certify a Fallback Recovery Proposal.
Thus, QCr must certify a Normal Proposal and at least

one honest process must use it to enter r+2. Therefore,
by Lemma 2, TCr−1 cannot exist. Furthermore, by the
Normal Vote Rule, at least f + 1 honest processes must
have locked QCr−1 before voting for Br, which must
certify the parent of Br. Additionally, since both QCr−1

and QCr exist and because Br−1 ⇐= Br, by the Two
Chain Commit Rule and Definition 6, Br−1 satisfies
the requirements to be LDC. Therefore, by the Garbage
Collection Rule and Two-Chain Commit Rule, if any
honest process observes QCr before it LDCs a block
for a round higher than r − 1, then it will LDC Br−1.
Moreover, by the QC Sync Rule, all honest processes
will do the same if they have also not LDC a block for
a higher round before they receive QCr. However, we
have already concluded that at least one honest process,
say v′′, must enter r+2 via QCr and that at least f +1
honest processes must have locked QCr−1. Moreover,
by Lemma 7, v′′ must enter r+2 before t2+2∆, so by
the QC Sync Rule, all honest processes will observe this
QC before t2 + 3∆. Additionally, since this QC cannot
exist before the aforementioned f + 1 honest processes
lock QCr−1, all honest processes will also observe
QCr−1 before this time. Thus, all honest processes will
LDC Br−1 or higher before t2 + 3∆. Moreover, by
Corollary 1, every LDC block for r′ > r − 1 will have
Br−1 ⇐=∗ Br′ .

Therefore, either QCr+1 will be UL before t2 + 4∆

or every honest process will LDC a block for r′ ≥ r−1
before t2 + 5∆.

Corollary 3 follows from Lemmas 14 and 15.

Corollary 3 (All LDC). Let Lr and Lr+1 be consecutive
honest leaders and suppose GST had passed before the
first honest process entered r. If τ > 4∆ then all honest
processes either LDC a block for r′ ≥ r − 1 before
t2 +5∆ or LDC a block for r′ ≥ r+1 before t3 +3∆.

Corollary 3 is sufficient to allow us to complete the
proof for Theorem 2. However, Chained Moonshot is
guaranteed to LDC honest blocks under other circum-
stances as well. Since we are interested in properly
understanding the round liveness properties of Chained
Moonshot, we go on to present several more lemmas
before completing our proof. This also allows us to
make our bound on c, which indicates the minimum
duration of network synchrony that a blockchain-based
SMR protocol can tolerate whilst still achieving the
Liveness property, tight.

Corollary 4 follows from Lemmas 14 and 15, and from
Definition 4, which implies that there are guaranteed to
be at least kf pairs of consecutive honest leaders every
kn rounds.

Corollary 4 (LDC Bounds). If τ > 4∆ and L is
deterministically fair then Chained Moonshot produces
at least kf honest blocks that satisfy the requirements to
be LDC every kn rounds after GST.

Lemma 16 (Canonical Progress). Let Lr−1 and Lr be
consecutive leaders and let Lr be honest. Also, suppose
that GST had passed before the first honest process
entered r. If τ > 4∆ then the first certified block Br′

with r′ > r extends either Br−1 or Br.

Proof: Suppose that Br′ does not extend either
Br−1 or Br. However, if Br′ were proposed as a Normal
Proposal then by virtue of its definition as being the
first certified block after round r and by the SupraBFT
Normal Vote Rule, r′ = r+1 and Br ⇐= B′. Therefore,
Br′ must be proposed as a Fallback Recovery Proposal.

Lemma 12 proves that Lr will propose. Consider the
type of this proposal.

Suppose Lr sends a Fallback Recovery Proposal con-
taining Br. Therefore, by Lemma 11, either QCr will
be UL before t1+4∆ or every honest process will LDC
a block for r′ ≥ r before t1 +5∆. In the latter case, by
Lemma 6, the proof is complete. In the former case, by
Definition 9 and Lemma 1, no honest process will ever
send Tr, so TCr will never exist. Therefore, because

21

Br′ must be proposed as a Fallback Recovery Proposal
and thus must be justified by a TCr′−1, r′ > r + 1.
Furthermore, since Br′ is the first certified block for a
round greater than r, TCr′−1 cannot contain a greater
QC than QCr. Moreover, because all honest processes
will lock QCr, which they can only do whilst in r + 1,
and because r′ − 1 ≥ r + 1, by Lemma 5, every
honest Tr′−1 message is guaranteed to contain QCr.
Consequently, TCr′−1 will necessarily include the QC
for Br as its highest QC. Thus Br ⇐= Br′ .

Alternatively, suppose that Lr does not make a Fall-
back Recovery Proposal. Therefore, by the Fallback
Proposal Rule, Lr must not enter r + 1 via TCr−1.
Suppose, then, that Lr enters r+1 via QCr−1. Therefore,
by Lemma 7, it must do so before t1+2∆. Consequently,
all honest processes are guaranteed to observe QCr−1

before t1+3∆ and thus will add it to U upon doing so.
However the Timeout and Timeout Sync Rules together
ensure that no honest process will broadcast Tr before
t1 + τ . Therefore, by Lemma 4, neither can any honest
process have sent a Timeout message for a higher round
before this time. Hence, since τ > 4∆, by Lemma 5,
if any honest process sends a Timeout message for r or
higher then this message will contain QCr−1 or higher.
However, as previously observed, TCr′−1 cannot contain
greater QC than QCr. Thus, either Br−1 ⇐= Br′ or
Br ⇐= Br′ .

Otherwise, by Corollary 2, Lr must proceed directly
from r to rh > r + 1. However, by Lemma 4, at
least one honest process must still enter r + 1. Conse-
quently, by Lemma 7, Lr must enter rh before t1+2∆.
Moreover, since τ > 4∆, no honest process can have
sent a Timeout message for r before this time, nor, by
Lemma 4, for any higher round. Thus, Lr must enter
rh via QCrh−2 ≥ QCr. Therefore, by the QC Sync
Rule, all honest processes will observe QCrh−2 before
t1+3∆, so, by Lemma 5, every honest Timeout message
for r or higher will contain at least QCrh−2. However,
we have already concluded that TCr′−1 cannot contain a
greater QC than QCr. Thus, QCrh−2 = QCr. Therefore,
Br ⇐= Br′ .

Thus, in all cases, either Br−1 ⇐= Br′ or Br ⇐=
Br′ .

Lemma 17 (LC Bounds). If τ > 4∆ and L is determin-
istically fair then all honest processes will LC at least
k(2f +1) new blocks, k(f +1) of which will be honest,
every kn rounds after GST.

Proof: Lemma 16 proves that for each pair of
Byzantine and honest leaders, every subsequently certi-
fied block is a descendent of a block proposed by one of

these two processes. Therefore, by Definition 5, the suc-
cessful block is canonical. Additionally, by Lemma 15,
whenever L elects two consecutive honest leaders, say
Lr and Lr+1, either Br+1 will be UL or every honest
process will LDC a block for r′ ≥ r−1 before t2+5∆.
In the former case, by Lemma 14 and Definition 5, Br+1

will be canonical. In the latter case, by Lemma 6, the
LDC block will be canonical. Moreover, since we have
assumed that L is deterministically fair, Definition 4
implies that the adversary controls the leaders of kf
rounds every kn rounds. Consequently, the adversary can
prevent at most kf blocks from becoming canonical in
the same interval. Thus, Chained Moonshot is guaranteed
to produce at least k(2f + 1) canonical blocks every
kn rounds, at least k(f + 1) of which will be honest.
Additionally, by Corollary 3, every time Lr and Lr+1 are
both honest, all honest processes will LDC a new block
before t3 +3∆. Therefore, all honest processes will LC
at least k(2f + 1) new blocks, k(f + 1) of which will
be honest, every kn rounds after GST.

Let τ = x∆ where x > 4 and suppose M = c∆.
Recall also that Lemma 8 proves that all honest processes
observe a QC for given round no later than 4∆+ τ after
the first honest process enters it. Consequently, the upper
bound on the length of any round is (x+4)∆. Therefore,
if u = x + 4 then if c > uj + l | j > 1, l > 0 then
Theorem 2 follows for all variants of Chained Moonshot
that have:

1) Leader election functions that deterministically
elect at least one pair of consecutive honest leaders
every j rounds.

2) Block delivery protocols that guarantee that if any
honest process observes a QC for some block B
at time t then every honest process will receive B
before t+ l∆.

Theorem 2 (Liveness). For every run R ∈ RP , for each
synchronous interval S ∈ CR(M), each honest process
v ∈ V appends at least ⌊ |S|

M ⌋ new blocks proposed by
honest leaders to its local blockchain Bv during S.

Proof: Recall that CR(M) = {S | S ∈ SR and
|S| ≥ M} where M = c∆. Therefore, since every S
occurs after GST, and because |S| ≥ (uj + l)∆ where
j > 1 and k > 0, Corollary 2 proves that all honest
processes continue to enter increasing rounds during
each S.

Furthermore, since |S| ≥ (uj + l)∆, every honest
process is guaranteed to advance through at least j
rounds during each period of synchrony during R. Con-
sequently, because L guaranteed to elect at least one pair

22

of consecutive honest leaders every j rounds, Corollary 3
implies that all honest processes will LC at least one new
block whenever this occurs.

Finally, since all in-transit messages are delivered
upon GST and because every S occurs after GST, the
lossless network and the QC Sync Rule together ensure
that every honest process will have observed the QCs of
all previously-certified blocks before scheduling Br for
commit. Therefore, if QCs include the blocks themselves
per the simplified algorithm presented in Section IV,
then by the semantics of the commit function given in
Table II, every honest process will append Br and its
uncommitted ancestors to its local blockchain no later
than the time that they observe the QC for Br+1 (i.e.
when they LC Br).

Alternatively, if QCs instead include the digest of the
corresponding block then some honest processes may
need to retrieve some blocks via the synchronisation
protocol discussed in Section VI in order to append it
to Bv. However, recall that we are assuming that the
protocol implementation incorporates a block delivery
protocol that ensures that if any honest process observes
a QC for some block B at time t then every honest
process will receive B before t + l∆. Therefore, since
|S| ≥ (uj + l)∆ and because all honest processes must
observe the QC for Br before u(j−1)∆ in order to lock
it, which they must have done in order to vote for Br+1,
they are all guaranteed to receive Br and by extension,
all of its ancestors, during S and thus will append Br

and its uncommitted ancestors to their respective local
blockchains during S.

By extension, if |S| = qM + r where q > 0, r ≥ 0,
then each honest process v ∈ V will append at least
q new blocks proposed by honest leaders to its local
blockchain Bv during S. Thus, each honest process v ∈
V appends at least ⌊ |S|

M ⌋ new blocks proposed by honest
leaders to its local blockchain Bv during S.

We observe that Chained Moonshot with a round-
robin leader election function satisfies Theorem 2 for
j = f+2 when paired with a block delivery protocol that
provides the aforementioned guarantee. Such a leader
election function is, per Definition 4, deterministically
fair with k = 1 and thus ensures that at least 2f + 1
out of every n leaders is honest. This ensures that
the protocol will have at least one sequence of two
consecutive honest leaders every f + 2 rounds. More-
over, if the accompanying block delivery protocol is the
simple synchronisation protocol discussed in Section VI,
then the implementation of Chained Moonshot satisfies
Theorem 2 for l = 2.

TABLE V
BENCHMARK NETWORK DISTRIBUTION

Network Size Regions
10, 50 us-east-1, us-west-1, eu-north-1, ap-northeast-1,

ap-southeast-2
100, 200 us-east-1, us-east-2, us-west-1, us-west-2, ap-

east-1, ap-south-1, ap-northeast-1, ap-northeast-
2, ap-northeast-3, ap-southeast-1, ap-southeast-
2, ap-southeast-3, ca-central-1, eu-central-1, eu-
west-1, eu-west-2, eu-west-3, eu-north-1, eu-
south-1, me-south-1

Finally, we observe that the previously given value
of M is over-approximate. It assumes that the network
takes at least u∆ to decide on a value every round, but
we know from the former reasoning that at most kf
out of every kn rounds can end with a TC when L is
deterministically fair. Consequently, a tighter bound on
the required length of each S ∈ CR(M) exists, although
we do not derive it here.

VIII. EVALUATION

We presented a brief and informal theoretical compar-
ison between Chained Moonshot and some of its recent
blockchain-based SMR predecessors in Section III. We
reserve a more detailed comparison for a later version
of this paper and now go on to discuss our practical
evaluation of our protocol.

As mentioned in Section III, Jolteon was the most effi-
cient derivative of Chained HotStuff known to us during
our development of Chained Moonshot. Jolteon also has
multiple publicly-available implementations, making it a
convenient candidate for comparison. Accordingly, we
implemented Chained Moonshot including the optimi-
sation discussed in Section VI by modifying the code
for Jolteon available in the Narwhal-HotStuff branch
of the repository [1] created by Facebook Research
for evaluating Narhwal and Tusk. We decoupled our
implementation from Narhwal and then did the same
for Jolteon so that we could compare the two consensus
protocols in isolation. We replaced both the Narwhal
mempool and the simulated-client process by having the
block proposers of each protocol create parametrically
sized payloads during the block creation process. We left
the TCP-based network stack mostly intact and applied
the few necessary changes to both implementations to
ensure that any differences in performance were solely
due to the differences between the consensus protocols
themselves.

Our goal was to compare the throughput and latency of
Chained Moonshot and Jolteon across two dimensions:

23

firstly, with respect to the size of the network; and
secondly, with respect to the size of the block payload.
We established two metrics for throughput: Firstly, the
number of blocks committed by at least 2f+1 processes
in the network during a run, hereafter referred to as
block throughput; and secondly, the average number of
bytes of payload data transferred per second during the
run, hereafter referred to as transfer rate. We chose
these metrics for throughput rather than the typical
transactions committed per second, because our protocol
is agnostic to the transaction delivery and execution
layers. Correspondingly, for latency, we measured the
time between the creation of a block and its commit
by the 2f + 1th process. We likewise chose this metric
rather than the typical end-to-end metric, which instead
measures the time between the client’s submission of a
transaction and its receipt of proof of the transaction’s
successful execution, for the same reason.

In accordance with the brief analysis of Jolteon’s la-
tency given in Section III (i.e. 5δ vs Chained Moonshot’s
3δ), our hypothesis was that our implementation would
exhibit 40% lower latency than Jolteon when Proposal
and Prepare dissemination times were approximately
equal, with this improvement decreasing towards 30%
lower latency as the payload size increased and thus
the Proposal transmission time increased relative to the
Prepare transmission time. We likewise expected it to
produce twice the throughput when the dissemination
times of these two types of messages were equal, de-
creasing towards equal throughput as the Proposal trans-
mission time relatively increased. Both of these expec-
tations were subject to the assumption that the increased
communication cost incurred by Chained Moonshot’s
broadcasting of QCs and Prepare votes would remain
within the network and computational bandwidth of the
nodes.

We tested network sizes of 10, 50, 100 and 200 nodes,
and seven payload sizes ranging between 1.8kB and
18MB, where individual payload items were 180 bytes
in size. We incremented the payload size by an order of
magnitude after each test in order to quickly identify the
approximate transfer rate limit of each protocol in the
larger networks. We chose the upper bound of 18MB
(except for the Throughput vs Latency experiments) to
avoid the excessively high latencies exhibited by the
larger networks obscuring the visualisation of the other
results. Likewise, we split the final interval between 10k
payload items and 100k payload items into a further
two intervals to increase the precision of the results
reported in Figure 5. We executed each combination

of network and payload size three times to increase
the representativity of the results, with runs lasting five
minutes each. The reported result for each of these
configurations was calculated as the average of the three
runs.

Our networks were constructed from m5.xlarge AWS
EC2 instances running Ubuntu 20.04. Each of these
instances had a network bandwidth of up to 10Gbps3,
16GB of memory and Intel Xeon Platinum 8000 series
processors with 4 virtual cores. The instances were
distributed across the regions described in Table V. We
configured all nodes to be honest because we were
primarily interested in showing Chained Moonshot’s
benefits under typical operating conditions. We intend
to report on its behaviour under adversarial conditions
in future work. The timeout interval τ was set to five
seconds for all configurations up to the 1.8MB payload
size. Thereafter, we had to adjust this value upward to
enable the protocols to continue to make progress. Since
we were focused on testing the Normal Paths of these
protocols, this value is not particularly relevant to the
results, but we report it for the sake of completeness.

As shown by Figures 3 and 4, Chained Moonshot
outperformed Jolteon in both latency and throughput in
every configuration, averaging 41.1% lower latency and
54.9% higher throughput across all configurations.

Most configurations exhibited relatively consistent la-
tency improvements, but the general trend did not con-
form to our expectations. Specifically, Chained Moon-
shot consistently produced its smallest improvements for
the 1.8kB payload size, which should have had similar
dissemination times for both Proposals and Prepares and
thus, according to our simple analysis, should have pro-
duced the greatest improvement. Comparatively, increas-
ing the payload size did little to reduce Chained Moon-
shot’ outperformance, with every other payload size av-
eraging at least 39% lower latency than Jolteon across all
network sizes, with many configurations exceeding the
maximum expected improvement of 40%, implying that
its vote-broadcasting incurs negligible overhead under
these configurations. The minimum of 22.8% decreased
latency relative to Jolteon was produced by the 50 node,
1.8kB configuration, while the maximum decrease of
58.7% was seen in the 200 node, 180kB configuration.

Chained Moonshot’s relative improvement in through-
put compared to Jolteon generally increased with the size
of the network, increasing from 38.2% better on average
for the 10 node network to 65.7% better on average

3https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ec2-
instance-network-bandwidth.html

24

Fig. 3. Latency

in the 200 node network. However, its increase in
throughput was generally much less than expected for the
smaller payload sizes and fluctuated as the payload size
increased rather than decreasing as expected. Chained
Moonshot produced a maximum throughput increase of
78.4% for the 100 node, 1.8kB configuration, with the
minimum of 24.5% coming from the 10 node, 18MB
configuration.

Latency roughly doubled and block throughput ap-
proximately halved for both protocols for every order-
of-magnitude increase in payload size. By contrast, both
metrics remained comparable as the network size in-
creased for the smaller payload sizes, with the payload
sizes above 1.8MB consistently producing worse perfor-
mance for both metrics as the network size increased.

Figure 5 presents the characteristic curve for the
transfer rate and latency of the two protocols in two
graphs, the first of which uses standard scaling, and
the second of which uses log scaling on both axes to
emphasise the separation between Chained Moonshot
and Jolteon at smaller payload sizes. As expected, both
protocols showed both an increasing transfer rate and
increasing commit latency as the payload size increased,
but eventually reached a point of saturation after which

Fig. 4. Throughput

TABLE VI
THROUGHPUT VS LATENCY: INFLECTION POINTS

Network Payload Size Transfer Rate Latency
Chained Moonshot

10 4.5MB 6.8MB/s 3.1s
50 9MB 5.8MB/s 3.8s
100 4.5MB 3.4MB/s 3.2s
200 4.5MB 2.6MB/s 4.2s

Jolteon
10 18MB 7.6MB/s 6.8s
50 9MB 3.9MB/s 6.5s
100 4.5MB 2.3MB/s 5.8s
200 4.5MB 1.6MB/s 7.9s

increasing the payload size decreased the transfer rate but
continued to increase the latency. Both protocols reached
saturation in the 100 and 200 nodes networks, with both
recording their maximum transfer rates under the 9MB
payload in the 100 node network and the 4.5MB payload
in the 200 node network. Jolteon maximised its transfer
rate at 2.7MB/s in the 100 node network, compared
to the 4.6MB/s of Chained Moonshot. Comparatively,
Chained Moonshot produced 2.6MB/s in the 200 node
network, while Jolteon achieved only 1.6MB/s. Neither
protocol reached saturation in the 50 and 10 node

25

Fig. 5. Throughput vs Latency

networks under the tested payload sizes. We added a
180MB payload test to the 10 node network in order
to clarify the trend in this setting. As the figures show,
Chained Moonshot consistently outperformed Jolteon in
all configurations.

Table VI summarises the inflection points of the vari-
ous curves. These points identify the payload size under
which the respective protocol maximised its transfer rate
compared to its commit latency and thus represent the
point of maximum efficiency, out of the tested config-
urations, for the given network size. Overall, Chained
Moonshot achieved both higher throughput and lower
latency when performing optimally in all network sizes
except for the 10 node network, where it produced a
slightly lower transfer rate than Jolteon, but was able to
do so with less than half the latency.

In summary, we attribute the aforementioned devi-
ations from our expectations to the simplicity of our
analytical model, which did not precisely factor in either
the many nuances of the two implementations or the
system’s actual bandwidth and compute resources. Fur-
thermore, Chained Moonshot exhibited a higher variance
between runs than Jolteon did, for both metrics and
across most configurations, possibly indicating that there

remains room for improvement in our implementation.
Overall, these results show that Chained Moonshot
provides meaningfully decreased latency and increased
throughput compared to Jolteon across all tested config-
urations.

IX. CONCLUSION

We introduced Moonshot, a new family of blockchain-
based BFT SMR protocols characterised by optimistic
proposal. We also formally defined Chained Moonshot,
a variant of Moonshot that leverages QC chaining and
vote-broadcasting to achieve a best-case block finalisa-
tion latency of 3δ and block period of δ at the cost of a
best-case communication complexity of O(n2) messages
per decision. This corresponds to an expected 40% re-
duction in block finalisation latency and a 50% reduction
in block period with respect to Jolteon’s normal path.

In our experiments, Chained Moonshot exhibited
an average of 41.1% lower block finalisation latency
and 54.9% higher block throughput when compared to
Jolteon in WANs of 10, 50, 100 and 200 nodes with
varying payload sizes. We intend to perform further
experiments with Chained Moonshot to showcase its
performance in the fallback path. We will also be up-
dating this paper in the near future to include formal
descriptions and analyses of other variants of Moonshot.

REFERENCES

[1] Narwhal-HotStuff Github Repository. https://github.com/
facebookresearch/narwhal/tree/narwhal-hs. [Online; accessed 22-
January-2023].

[2] Ethan Buchman, Jae Kwon, and Zarko Milosevic. The latest
gossip on bft consensus, 2018.

[3] Miguel Castro and Barbara Liskov. Practical byzantine fault
tolerance. In 3rd Symposium on Operating Systems Design and
Implementation (OSDI 99), New Orleans, LA, February 1999.
USENIX Association.

[4] Cynthia Dwork, Nancy Lynch, and Larry Stockmeyer. Consensus
in the presence of partial synchrony. J. ACM, 35(2):288–323, apr
1988.

[5] Luciano Freitas, Andrei Tonkikh, Adda-Akram Bendoukha,
Sara Tucci-Piergiovanni, Renaud Sirdey, Oana Stan, and Petr
Kuznetsov. Homomorphic sortition – secret leader election for
pos blockchains, 2022.

[6] Rati Gelashvili, Lefteris Kokoris-Kogias, Alberto Sonnino,
Alexander Spiegelman, and Zhuolun Xiang. Jolteon and ditto:
Network-adaptive efficient consensus with asynchronous fall-
back, 2021.

[7] Leslie Lamport, Robert Shostak, and Marshall Pease. The
byzantine generals problem. ACM Trans. Program. Lang. Syst.,
4(3):382–401, jul 1982.

[8] Fred B. Schneider. The state machine approach: A tutorial.
In Barbara Simons and Alfred Spector, editors, Fault-Tolerant
Distributed Computing, pages 18–41, New York, NY, 1990.
Springer New York.

[9] The Diem Team. Diembft v4: State machine replication in the
diem blockchain, 2021.

26

https://github.com/facebookresearch/narwhal/tree/narwhal-hs
https://github.com/facebookresearch/narwhal/tree/narwhal-hs

[10] Maofan Yin, Dahlia Malkhi, Michael K. Reiter, Guy Golan
Gueta, and Ittai Abraham. Hotstuff: Bft consensus with linearity
and responsiveness. In Proceedings of the 2019 ACM Sympo-
sium on Principles of Distributed Computing, PODC ’19, page
347–356, New York, NY, USA, 2019. Association for Computing
Machinery.

27

	Introduction
	Paper Structure

	Preliminaries
	Network Model
	Blockchain-Based State Machine Replication

	Insight
	Method of Analysis
	Contribution

	Chained Moonshot
	Blockchain Model
	Leader Election
	Specification
	Normal Path for v V
	Fallback Path for v V

	Discussion
	Asynchronous Agreement
	Externally Verifiable Blockchain
	QC Broadcasting
	Fallback Recovery
	Round Expiry
	Timeout Sync
	TC Broadcasting
	Complexity Analysis

	Chained Moonshot with Efficient Voting
	Core Protocol Modifications
	Block Synchronisation Protocol
	Optimisations and Analysis

	Correctness Proofs
	Safety
	Liveness

	Evaluation
	Conclusion
	References

