
FlexiRand: Output Private (Distributed) VRFs and
Application to Blockchains

Aniket Kate
Supra Research/Purdue University, USA

aniket@purdue.edu

Easwar Mangipudi
Supra Research, USA

e.mangipudi@supraoracles.com

Siva Maradana
Indian Statistical Institute, India
msivakumar.1431@gmail.com

Pratyay Mukherjee
Supra Research, India

p.mukherjee@supraoracles.com

ABSTRACT
Web3 applications based on blockchains regularly need access
to randomness that is unbiased, unpredictable, and publicly
verifiable. For Web3 gaming applications, this becomes a cru-
cial selling point to attract more users by providing credibil-
ity to the "random reward" distribution feature. A verifiable
random function (VRF) protocol satisfies these requirements
naturally, and there is a tremendous rise in the use of VRF
services. As most blockchains cannot maintain the secret keys
required for VRFs, Web3 applications interact with external
VRF services via a smart contract where a VRF output is ex-
changed for a fee. While this smart contract-based plain-text
exchange offers the much-needed public verifiability immedi-
ately, it severely limits the way the requester can employ the
VRF service: the requests cannot be made in advance, and the
output cannot be reused. This introduces significant latency
and monetary overhead.

This work overcomes this crucial limitation of the VRF ser-
vice by introducing a novel privacy primitive Output Private
VRF (Pri-VRF) and thereby adds significantly more flexibil-
ity to the Web3-based VRF services. We call our framework
FlexiRand. While maintaining the pseudo-randomness and
public verifiability properties of VRFs, FlexiRand ensures that
the requester alone can observe the VRF output. The smart
contract and anybody else can only observe a blinded-yet-
verifiable version of the output. We formally define Pri-VRF,
put forward a practically efficient design, and provide provable
security analysis in the universal composability (UC) frame-
work (in the random oracle model) using a variant of one-more
Diffie-Hellman assumption over bilinear groups.

As the VRF service, with its ownership of the secret key, be-
comes a single point of failure, it is realized as a distributed VRF
with the key secret-shared across distinct nodes in our frame-
work. We develop our distributed Pri-VRF construction by
combining approaches from Distributed VRF and Distributed
Oblivious PRF literature. We provide provable security analy-
sis (in UC), implement it and compare its performance with
existing distributed VRF schemes. Our distributed Pri-VRF
only introduces a minimal computation and communication
overhead for the VRF service, the requester, and the contract.

Contents

Abstract 1
Contents 1
1 Introduction 2
2 Use case 3
3 Technical Overview 4
4 Related Work 5
5 Preliminaries 6
5.1 Universal Composability 7
5.2 Shamir’s Secret Sharing [46]. 7
5.3 NIZK proofs 7
5.4 Our Model 8
5.5 (Threshold) One-More Diffie-Hellman

Assumptions 8
6 Output Private VRF (Pri-VRF) 9
6.1 Definition: Pri-VRF 9
6.2 Our Pri-VRF Construction 11
7 Distributed Pri-VRF (Pri-DVRF) 11
7.1 Definition: Pri-DVRF 11
7.2 Our Pri-DVRF construction 14
8 Performance Analysis 15
9 Conclusion 16
References 17
A Smart-contract based VRF Service Framework 18
A.1 GLOW-DVRF Framework [28, 29] 19
B Missing proofs 19
B.1 Proof of Theorem 1 19
B.2 Proof of Theorem 3 21
B.3 (Threshold) One-More Diffie-Hellman

Assumptions in Generic Group Model 24

1

1 INTRODUCTION
Randomness is a precious resource in computing. Its utility
ranges from generating cryptographic keys to performing sim-
ulations to facilitating online gaming. With the gigantic rise
of blockchain technology and Web3-based applications such
as decentralized finance and GameFi [16, 22], the demand for
reliable sources of randomness has increased enormously. In
many of these applications involving multiple parties, it is
important to ensure that the employed randomness is not pre-
dictable to, or not biased towards, any particular party. How-
ever, given that the secure on-chain randomness generation
within a smart contract is inefficient, if not infeasible, for most
blockchains, a natural approach is to delegate this to off-chain
computation. Off-chain computations, nevertheless, must be
verified on-chain to ensure the integrity of computation. Veri-
fiable random functions (VRFs) enable such functionality.

A Verifiable Random Function, 𝑉 is a keyed determinis-
tic function which, on an input tag/string 𝑥 , outputs a string
𝑦 = 𝑉𝑠𝑘 (𝑥). The secret-key 𝑠𝑘 is selected uniformly at random.
Intuitively, the VRF provides two main security guarantees: (i)
pseudorandomness, which implies that, as long as the secret-
key is hidden, the output is indistinguishable from a uniform
random string; (ii) verifiability, which implies that given 𝑥 , 𝑦
and a proof 𝜋 , anyone can publicly verify that 𝑦 is indeed com-
puted correctly as 𝑉𝑠𝑘 (𝑥) – such proof is produced using the
secret-key 𝑠𝑘 . Thanks to these guarantees, VRFs are sought af-
ter in blockchains, online gaming, and online lotteries: the use
of a VRF allows the service providers to demonstrate to anyone
interested that they are running their services unbiasedly.
VRF Services via Smart Contract. A few firms [15, 47] in
the blockchain industry offer VRF as a service for a fee, in
that VRF service and a randomness requester, such as a gaming
platform, communicate via a smart contract. Here, as shown in
Figure 1, the requester makes a randomness request to the VRF
service via a smart contract. The smart contract then forms
an input tag (INP) of a specific format (for more details on
the input formation, see Appendix A) and sends it to the VRF
service. Upon receiving the response from the VRF service, the
smart contract verifies the response, records the VRF output,
invokes the callback function provided by the requester, and
pays the VRF service.

We observe a couple of key practical issues with this ap-
proach: the VRF output appears on the public blockchain via
the smart contract interaction immediately upon the protocol
completion. This public nature of the VRF output puts signifi-
cant restrictions on the way the requester can employ it: (i) the
requester cannot make its request in advance towards having
the randomness ready when the play begins. The request has
to be synchronized with the application. As a result, the use of
publicly verifiable external randomness introduces a signifi-
cant latency overhead for the requester: It has to put the play
on hold as it initiates and completes the VRF request. (ii) as
the output is public, it cannot be re-used by the requester in the
future (for example using a PRG to generate multiple random
values to be used at different times when needed), which also

1.Requester input

2.Create INP
Requester

Smart Contract

VRF Service

5.VRF output

 6. Verify VRF
output

3.Fetch INP

 7.Invoke the
requester call back
function with the

output

4.Compute
VRF

Figure 1: Flow of messages for computing (distributed)
VRF via Smart Contract

1.Requester input

2.Create INP

Requester

Smart Contract

VRF Service

5.VRF output
 6.(Pre)Verify
VRF output

3.Fetch
Blinded INP

 7.Invoke the
requester call back
function with the
blinded output

3.Blinded INP
(with ZKP)

2.INP

4.Verify Blinding
ZKP and compute

VRF

Figure 2: FlexiRand: Flow of messages for computing
Output-private (distributed) VRF via Smart Contract

results in significant overhead w.r.t. gas cost and VRF service
fee as the requester has to make individual requests each time
new randomness is required.1 In a nutshell, this compels the
requesting platforms to carefully design their games/services
such that their players/clients cannot exploit the public VRF
outputs, and furthermore, the latency andmonetary overheads
stay affordable. This limits the utility of smart-contract-based
VRF services significantly.
Introducing Output-Private VRF. Towards overcoming the
issues with the existing VRF services in the blockchain ecosys-
tem, we introduce a new primitive called Output-Private VRF
(Pri-VRF) and provide an efficient construction. The design
is supported by our provable security analysis with respect
to our newly formalized definitions in the universal compos-
ability (UC) framework [11]. In Pri-VRF, only the requester
can obtain the output 𝑦 = 𝑉𝑠𝑘 (𝑥). Everybody else can only
see a blinded (a.k.a. masked) output, which only the requester
can unblind. Crucially, anyone can still publicly verify that the
requester’s request was legitimate and ensure the legitimacy
of the response (the final VRF output, when revealed, can still
be verified as usual).

Output-private VRF allows the requester to overcome the
above-mentioned restrictions as follows. As the public value is
blinded, the requester can compute the necessary randomness

1Chainlink’s VRF service [15] actually supports generating multiple random-
nesses by using the VRF output as a PRG seed. However, all randomnesses
must be used together at the same time to remain unpredictable. This domain
extension strategy may be helpful in specific applications, but it does not address
the issue fundamentally.

2

asynchronously (ahead of time) to be used at any later point
as needed – this resolves the first issue.2 Furthermore, due to
the privacy, one may extend the private output 𝑦 = 𝑉𝑠𝑘 (𝑥) to
generate multiple pseudorandom values 𝑧1 = PRG(𝑦, 1), 𝑧2 =

PRG(𝑦, 2), . . . using a pseudorandom generator. The random-
nesses 𝑧1, 𝑧2 can be used (asynchronously) at a later point
when needed. It thus can offer a cost-efficient randomness
generation mechanism.3

Output-Private Distributed VRF. For VRFs, the computing
node, which knows the secret key and computes the VRF
output, becomes a single point of failure for secrecy as well as
liveness: VRF outputs are completely predictable to this node
and the VRF computation discontinues if the specific node
crashes. Therefore, instead of using a centralized VRF, we can
opt for a distributed VRF (DVRF), an extension of VRF in the
decentralized setting.

In contrast to a centralized VRF, no single node has access to
the entire secret key in the DVRF framework. In particular, the
secret-key is shared among many parties (let us denote them
by 𝑃1, 𝑃2, . . . , 𝑃𝑛 and together call them the VRF committee),
for example, using Shamir’s secret sharing scheme [46], im-
plemented using an appropriate Distributed Key-generation
(DKG) protocol [30]. On an input 𝑥 , each party 𝑃𝑖 computes
a partial evaluation-proof pair (𝑦𝑖 , 𝜋𝑖) using their shares of
secret-key 𝑠𝑘𝑖 . An aggregator, who (possibly one of the servers
in the VRF committee) may not hold any secret-key, can pub-
licly gather 𝑡 + 1 ≤ 𝑛 such partial evaluations to aggregate
them into the final output 𝑦 and an accompanying proof 𝜋 –
this procedure is public.

A 𝑡 out of 𝑛 distributed (threshold) procedure is, in fact,
resilient to 𝑓 ≤ 𝑡 malicious corruptions, who may collude.
Therefore, this setting, compared to the centralized setting,
provides a number of enhanced guarantees: (i) consistency,
which guarantees that, any 𝑡 + 1 parties may collaborate to
produce a unique and consistent output 𝑦; (ii) robustness, that
ensures that if there is a wrongly computed partial evaluation,
it must be detected before aggregation; (iii) liveness (alterna-
tively availability), which ensures that corrupt parties can not
prevent the output from being computed. Furthermore, the
pseudorandomness guarantee is now much stronger as that
must be achieved in presence of ≤ 𝑡 malicious corruptions.

We extend our Pri-VRF notion to the 𝑡 out of 𝑛 distributed
setting, which we call Pri-DVRF – the extension is analogous
to distributed VRFs, albeit with added privacy guarantee. In
particular, in addition to the above guarantees, we need (iv)
output privacy, even when ≤ 𝑡 servers are malicious. So, each
server now computes a partially blinded value, that are aggre-
gated publicly (possible only if there are ≥ 𝑡 + 1 legitimate

2We stress that the requester gains no advantage by obtaining output 𝑦 early
because of public verifiability with respect to a well-formatted (along with
a timestamp) 𝑥 , which was already made public. E.g., this ensures that the
requester may not reject this 𝑦 in favor of a 𝑦′ as that requires querying with
another 𝑥 ′ .
3Let us stress that each such randomness 𝑧𝑖 can only be verified using 𝑦. Given
that one can compute all 𝑧𝑖 s, this approach can only be useful in a setting where
the verifiability can be deferred to a later point when all 𝑧𝑖 ’s were already used;
after that, a new VRF request must be made.

responses), and then the final blinded𝑦 is sent to the requester,
which then unblinds it to obtain 𝑦. All DVRF guarantees must
hold on the blinded values. Our UC definition captures all
these informal guarantees formally. Our design combines ap-
proaches from distributed VRFs (DVRF) [29] and Distributed
Oblivious PRFs [36], and easy to extend from our centralized
construction as well (we stress on the ease of decentralization
while designing the centralized version).
Implementation. We implement the Pri-DVRF construction
by extending the GLOW-DVRF [28, 29], written in C++. Our
reference implementation indicates that the construction is
highly practical, taking less than 0.5msec for the partial evalu-
ation on each VRF node in a single-threaded implementation.
The time taken is not too high compared to the non-private
DVRF – 400`sec (vs 253`sec) for the BN256 curve using the
mcl library [1]. The requester takes ∼ 300` sec for blinding
and generating the zero-knowledge proof of correct blinding
before forwarding it to the VRF service.
Contribution. This work is motivated by a contemporary
real-world problem currently most visible in the blockchain
game sector (see Section 2). In this work we adapt the existing
techniques carefully in order to resolve that practically while
providing rigorous theoretical analysis. We summarize our
contributions here:

– We introduce the notions of (distributed) Output-private
VRF that guarantees the privacy of the VRF output. Our for-
malization is based on UC framework and thus provides a
strong security guarantee.

– We provide a Pri-VRF construction and a Pri-DVRF con-
struction, both based on bilinear pairing. We give provable
security analysis within our UC-based definitions. Our con-
structions borrow idea from the DVRF construction by Galindo
et al. [29] and the Oblivious (D)PRF construction of Jarecki et
al. [36].We outline an enhanced smart contract based Pri-(D)VRF
framework, that we call FlexiRand which incorporates the flex-
ibility of our constructions.

– We show the practical efficiency of our constructions by
providing simple implementation on top of GLOW-DVRF [29];
the VRF committee nodes incur an overhead of about 1.6x
in computation time compared to GLOW-DVRF. This is a
very reasonable trade-off compared to the benefits offered by
FlexiRand.

– We provide a concrete real-world use-case where using
FlexiRand instead of standard DVRF service is significantly
beneficial. Our use-case stems from a real world requirement
of DeFi gaming platform such as DeFi Kingdoms [22] which
crucially requires distributing random rewards (e.g. NFTs) in
Blockchain Games [16].

2 USE CASE
In this section we describe a specific use-case, which is the
primary motivation for this work. DeFi gaming (GameFi) plat-
forms are increasingly becoming more popular in the Web3
world. They need access to randomness that is sensitive with
respect to latency as well as cost. Precisely, cross-chain gaming

3

platforms such as DeFi Kingdoms [22] attract customers by
providing virtual assets (such as NFTs) to the players randomly
at regular intervals within a game. Its philosophy is to offer
the gamer an experience of "fun with surprises".

As explained in the Chainlink blog [16], a platform that
engages in random reward distribution acquires significantly
more credibility by providing publicly verifiable proof that the
randomness is generated correctly. A smart-contract-based
VRF service (as depicted in Figure 1) exactly provides that. Nev-
ertheless, based on our discussion with DeFi Kingdoms [23],
the service suffers from the aforementioned problems: (i) since
the request can not be made in advance, there is a latency
involved which is beyond the control of the platform; (ii) the
overall fees to avail such a service become prohibitively expen-
sive. In particular, they are interested in a service, in that the
VRF output can be made in advance to avoid an unpredictable
latency during the game and can be (re-)used as a seed to gen-
erate multiple random values over a period of time because
a gamer is rewarded with a randomly chosen virtual asset
after completing a few steps. Of course, one may think about
re-using the VRF output, exposed on the contract, to generate
random values, but then all those values are predictable defy-
ing the "surprise" aspect. Instead, in our framework, the VRF
output remains hidden/blinded on-chain, and the verifiability
can be deferred until all the random values, derived from a
VRF request, are exhausted.

3 TECHNICAL OVERVIEW
Our framework and input formatting. In our non-private
DVRF framework (cf. Figure 1), a requester sends a request
to the smart contract, which then crafts an input INP care-
fully – the input is composed of many parameters, impor-
tant for practical deployment of both DVRF framework and
FlexiRand (for more details, we refer to Appendix A) and cru-
cially prevent attacks as explained below. The input is sent
to the VRF committee (consider the centralized version as a
special case of DVRF where 𝑛 = 1, 𝑡 = 0). The servers interact
to produce an output, which is then sent to the contract. The
contract verifies the output and on success, forwards that to
the requesting platform. The main change in the FlexiRand
framework comes in the initial phase when the smart contract
sends back the input INP to the requester (Step-2 of Figure 2),
who then sends a blinded input (along with a NIZK proof of
knowledge of exponent) to the contract. From this point on-
wards, the rest of the flow is pretty much the same, except that
the contract now runs a verification over the blinded values.
Repeating input attack. One easy way to break the privacy
might be to observe the input 𝑥 , and then make the same re-
quest pretending to be the “owner” of 𝑥 and legitimately derive
𝑦. The framework would prevent this by carefully crafting the
input INP such that it has a component reflecting the owner’s
identity (for example, the requester’s public key) – this can
be checked at the server’s end to avoid such an attack. This is
incorporated in our construction by assuming a unique owner
for input and is captured within our UC definition explicitly.

Our Pri-VRF construction. Our constructions combine tech-
niques from the Oblivious PRF by Jarecki et al. [36] with the
GLOW-DVRF by Galindo et al. [29]. We first describe how our
Pri-VRF construction works. Consider a bilinear pairing group
structure 𝑒 : G1 × G2 → G𝑇 , each a cyclic group of prime
order 𝑝 . The VRF secret-key 𝑠𝑘 is chosen at random from
Z𝑝 , whereas the public verification key 𝑣𝑘 is pair of group
elements (𝑣𝑘1 = 𝑔𝑠𝑘1 , 𝑣𝑘2 = 𝑔𝑠𝑘2) where 𝑔1, 𝑔2 are random gen-
erators of groups G1 and G2 respectively. A requester with an
input 𝑥 first blinds her input to generate 𝜓 = H1 (𝑥)𝜌 ∈ G1
for a hash function H1 (·), random blind/mask 𝜌 in Z𝑝 and
produces a NIZK proof of knowledge of 𝜌 (Schnorr’s proof
for knowledge of exponent [45]) and sends that over to the
smart-contract, which forwards it to the VRF server. The server
first verifies the NIZK proof, and if that succeeds, sends back
𝑦 = (H1 (𝑥)𝜌)𝑠𝑘 . The contract verifies the response by using
bilinear pairing 𝑒 (𝜓,𝑔𝑠𝑘2) = 𝑒 (𝑦,𝑔2) (exactly the same as BLS
signatures [9]) and if that succeeds, then it forwards 𝑦 to the
requester, who then unblinds to get 𝜋 = 𝑦1/𝜌= H1 (𝑥)𝑠𝑘 ; then
derives 𝑦 as H2 (𝜋). The final VRF verification is again run-
ning the BLS verification, but now with different components:
𝑒 (H1 (𝑥), 𝑔𝑠𝑘2) = 𝑒 (𝜋,𝑔2) plus the hash H2 (𝜋) = 𝑦. Note that
there are three verifications in total: one for the requester’s
message, one for the server’s message, and finally, one for the
VRF triple – all of them can be done publicly. Furthermore,
using these three verifications together, one could verify not
only the output 𝑦 is correct but the entire flow of communi-
cation with the input 𝑥 is associated with the output 𝑦 – this
might be desirable in some applications.
Our Pri-DVRF construction. We extend our centralized
solution to a 𝑡 out of 𝑛 setting by using a VRF committee con-
sisting of 𝑛 nodes, each of which holds a secret-key share 𝑠𝑘𝑖
of 𝑠𝑘 (this can be typically achieved through a distributed key-
generation (DKG) protocol such as [31]). The verification key
now is of the form 𝑣𝑘 = (𝑝𝑘 = 𝑔𝑠𝑘2 , 𝑣𝑘1 = 𝑔

𝑠𝑘1
1 , 𝑣𝑘2 = 𝑔

𝑠𝑘𝑖
1 , . . .).

The requester’s steps are identical – in fact, the requester may
be completely agnostic of whether a centralized or a decen-
tralized service is being used (or what 𝑛, 𝑡 are being used). The
smart-contract now sends the blinded request to each server in
the committee. So, once a VRF server within VRF committee
receives a blinded request𝜓 along with 𝑥 and a NIZK proof,
each of them checks the proof as before, and if that succeeds,
now uses its share 𝑠𝑘𝑖 to compute a partial value 𝑤𝑖 = 𝜓𝑠𝑘𝑖 .
Additionally, it computes another NIZK for equality of ex-
ponent (we use Chaum-Pederson [17]) between 𝑤𝑖 and 𝑣𝑘𝑖 .
Then it sends over the partial evaluation 𝑤𝑖 plus the proof
to the aggregator, who verifies each NIZK proof, and if at
least 𝑡 + 1 of them succeeds, then combines the corresponding
partial evaluations via Lagrange interpolation in the expo-
nent to compute 𝑦 = H1 (𝑥)𝜌 ·𝑠𝑘 . Given 𝑥,𝜓,𝑦, the contract
verifies using the bilinear map and then sends that over to
the requester on success. The overall computational overhead
for the VRF committee servers is less than 2x compared to
GLOW-DVRF, and is incurred due to the blinded-input NIZK
verification by each server. Importantly, in our framework the

4

smart-contract’s work is exactly the same (a single pairing
computation) and hence the gas cost remains the same.
Security Analysis. Consistency is guaranteed easily using
Shamir’s secret sharing. Robustness is guaranteed by the sound-
ness of NIZK proof of equality computed during partial eval-
uations. Then we restrict our setting such that 𝑛 ≥ 2𝑡 + 1
– this, combined with robustness immediately gives liveness.
The pseudorandomness of our constructions require that, if
the server is not corrupt, no one else can predict the output 𝑦
unless explicitly obtained from the server. For the distributed
setting, the same should hold even if at most 𝑡 servers are
maliciously corrupt additionally. This is no different from the
same scenario in the Jarecki et al.’s [36] oblivious PRF con-
struction. So, our proof closely follows theirs and relies on a
similar assumption, namely a variant of (threshold) one-more
DH assumptions. However, since we are in bilinear pairing
groups, we require a version that holds in a pairing source
group. Nevertheless, in contrast to them, we do not need a
gap version due to the presence of pairing. The output-privacy
part is new to our setting and is carefully handled using the
CDH assumption over bilinear groups (known as Co-CDH).
Intuitively, this part works because of the unpredictability of
H1 (𝑥)𝑠𝑘 , given 𝑔𝑠𝑘1 , H1 (𝑥)𝑠𝑘 ·𝜌 and H1 (𝑥)𝜌 (in the centralized
case), which is somewhat similar to the proof of BLS signature
unpredictability but requires more care due to exposure of
many exponents of H1 (𝑥). When the server is compromised
(in the decentralized case, that is equivalent to corruption of
> 𝑡 servers), then the only guarantee one may hope for is that
the output 𝑦 is correct, although not unpredictable – this is
not hard to see because of the soundness of the NIZK proof
(in the decentralized setting) or correctness of bilinear pairing
(for centralized case). We model all hash functions as random
oracles and carefully program them in the proofs.
Alternative approaches: Encryption plus NIZK. One way
to generically convert any (D)VRF to a Pri-(D)VRF is to use
(fully homomorphic) encryption and any non-interactive zero-
knowledge proof (NIZK): the requester simply sends the input
to the VRF committee (via the smart-contract) who computes
the partial evaluations and provides a NIZK proof of correct
evaluations. The aggregation can be done using homomor-
phism (for some constructions, additive homomorphism may
suffice) plus by producing another succinct NIZK (such as
SNARKs) of correct verification of at least 𝑡 + 1 ciphertexts.
While this may be a potential solution, the efficiency of this
may be significantly worse than our approach. In particular,
producing NIZK proof of a specific encryption scheme (even
efficient ones such as ElGamal [33]) already adds significant
overhead; on top of that producing an aggregated proof during
aggregation seems to incur even more computational ineffi-
ciency. Of course, this approach may be reasonably efficient
(though still probably much behind our centralized version)
in the centralized setting, but since we prefer a scheme that
supports easy decentralization, we do not follow this.

Alternative without the bilinear pairing?. One may won-
der whether the bilinear pairing is necessary here. In particu-
lar, what happens if we replace the pairing verification with
a NIZK verification: the server would send 𝜋 as above, plus
a NIZK proof of the equality of exponent with 𝑔𝑠𝑘1 (Chaum-
Pederson’s proof [45]) – basically adding output-privacy on
top of [32]. The issue here is that the requester can not have a
publicly verifiable triple (𝑥,𝑦, 𝜋), as the NIZK proof does not
immediately support the “homomorphism” in bilinear pairing
like above. Furthermore, such an approach would not be easy
to decentralize because the NIZK proofs must be aggregated
using, for example, a SNARK proof, leading to a significant
challenge in terms of constructing an efficient SNARK for
that specific language. In contrast, our approach is readily
extendable into a decentralized setting.
Bilinear vs NIZK in Pre-verification. As shown by Galindo
et al. [29], an alternative to using Chaum-Pederson’s NIZK
could be to use bilinear pairing for verifying server’s response
akin to our centralized construction. However, as shown in
the same work, this would incur a computational overhead
of about 2.5x compared to the NIZK proof – as in the case
for Dfinity-DVRF vs GLOW-DVRF. This is because the NIZK
proof works in the group G1 and supports faster operation
than bilinear pairing. We remark that the idea of using Chaum-
Pederson’s proof for verifying the server’s partial response
during aggregation can also be incorporated in the centralized
setting (albeit the final verification of (𝑥,𝑦, 𝜋) should still be
done using pairing). However, in practice, the benefit is much
less as only one pre-verification is done compared to at least
𝑡 + 1 pre-verification performed in the distributed setting. So
we choose to leave the centralized construction simple and use
the NIZK-based optimization only in the distributed version
(though it can be realized as a special case: 𝑛 = 1, 𝑡 = 0).

4 RELATEDWORK
Verifiable Random Functions. The concept of VRF was in-
troduced by Micali, Rabin and Vadhan [40]. They first noticed
the similarities between VRFs and unique signatures (produces
a unique signature for each message). Their construction is
based on RSA signatures. Later, this was improved by the work
of Dodis and Yampolskiy [25] – this construction is based on
bilinear pairing and collision-resistant hash functions and is
more efficient than Micali et al.’s construction. Feasibility of
“theoretically optimal”4 VRFs was settled by Hofheinz and
Jager [35] – as expected, the design is not practical. This was
later improved by Kohl [38] and very recently by Niehues [42].
Nir Bitansky [8] explores the relations between VRFs and
other cryptographic concepts such as non-interactive zero-
knowledge proofs. Post-quantum secure VRFs were explored
by Esgin et al. [26].

In the practical regime, the most relevant construction was
proposed by Goldberg et al. [32], which is being used by many

4By theoretically optimal we mean that the design was proposed only to satisfy
theoretical interest with the minimal assumption, standard model (for example,
not in random oracle model), adaptive security etc.

5

enterprises such as Algorand and is now in the process of
IETF standardization. The VRF design combines a pseudoran-
dom function and a simple zero-knowledge proof of exponent
(namely Schnorr’s [45]). The designs elaborated on in this
paper are conceptually related to this approach.
Distributed VRF. Distributed VRF was first considered by
the work of Dodis [24], which requires a trusted dealer. Kuchta
and Manulis [39] proposed a generic construction based on
aggregate signatures. However, the most relevant to us is the
work by Galindo et al. [28, 29] who formalized the security
properties and analyzed three constructions. The first construc-
tion is a variant of distributed PRF [4, 41], which is essentially
a distributed counterpart of the Goldberg et al. [32] construc-
tion with appropriately adjusted zero-knowledge proofs and
a specific distributed key-generation protocol (a variant of
Gennaro et al. [31]) – this is termed as DDH-DVRF. While
the computation is very efficient, the size of the final proof is
proportional to the number of participants. The second con-
struction they considered is the one that was proposed and also
used by Dfinity [34] – this is similar to DDH-DVRF, but uses
bilinear pairing to enable a compact proof. However, the use
of bilinear groups comes with a cost over discrete log groups
(as mentioned later). The construction is very similar to BLS
signatures [10] and is used in many places [18, 19, 21, 44].
Their final construction is called GLOW-DVRF – this was pro-
posed in that paper. GLOW-DVRF uses bilinear pairing for
final verification, but Schnorr’s proof of exponent for partial
verification – as a result not only is the security improved but
the computation time is also improved by about 2.5x. The only
cost is in terms of the size of partial proofs, which increases a
little, but still stays well within the allowed bandwidth. Our
Pri-DVRF construction is based on this.
VRFs in Blockchain. Many blockchain services use VRFs
internally as a crucial source of randomness. For example,
Cardano [14] and Polkadot [43] implement VRFs for block
production. Dfinity [34] uses a DVRF (namely Dfinity-DVRF,
as mentioned above) for producing a decentralized random
beacon. Chainlink offers a popular VRF service that employs
the VRF algorithm from Goldberg et al. [32] along with some
optimizations. However, from their description [15], it seems
that their VRF secret-key is not decentralized (in other words,
they do not use a DVRF), and therefore is susceptible to a
single point of failure.
Oblivious PRF (OPRF). The notion of Oblivious PRF (OPRF)
is quite pertinent to our notion of Pri-VRF. OPRF is an ex-
tension of PRF to two-party setting where a server holds the
secret key and a client holds an input – the notion was intro-
duced in [27] and found numerous interesting applications,
such as in key-word search, private set intersections etc. The
main guarantees provided by OPRF are twofold: (i) the server
should not learn the input (which we do not require); (ii) a
client should not be able to break the pseudorandomness of
the output (which we also need). Our Pri-VRF instantiations
are similar to the (Distributed) OPRF used in the Jarecki et al.
[36] and [3]. And we use a very similar BOMDH (T-BOMDH

for Pri-DVRF) assumptions to prove the pseudorandomness
of our construction. However output-privacy part is a new
addition and requires new analysis.

5 PRELIMINARIES
Notation. We use N to denote the set of positive integers,
Z to denote the set of all integers and [𝑛] to denote the set
{1, 2, . . . , 𝑛} (for 𝑛 ∈ N). A tuple of values is denoted by the
vector notation v = (𝑣1, 𝑣2 . . .). For a boolean vector v ∈
{0, 1}𝑛 , its hamming weight is given by the number of 1s in v.
For any set S, |S| denotes its cardinality.

We denote the security parameter by ^. We assume that
every algorithm takes ^ as an implicit input, and all definitions
work for any sufficiently large choice of ^ ∈ N. We will omit
mentioning the security parameter explicitly except in a few
places. We use negl(^) to denote a negligible function in the
security parameter; a function 𝑓 : N→ N is considered neg-
ligible if for every polynomial 𝑝 , it holds that 𝑓 (𝑛) < 1/𝑝 (𝑛)
for all large enough values of 𝑛. Similarly, we use poly(^) to
denote a polynomial function of the security parameter ^.

We use D(𝑥) =: 𝑦 or 𝑦 := D(𝑥) to denote the evaluation of
a specifically deterministic algorithm D on input 𝑥 to produce
output 𝑦. Often we use 𝑥 := val to denote the assignment of
a value val to the variable 𝑥 . We write R(𝑥) → 𝑦 or 𝑦 ←
R(𝑥) to denote evaluation of a probabilistic algorithm R on
input 𝑥 to produce output 𝑦. We mostly consider probabilistic
polynomial time (PPT) algorithms, which are randomized and
run in polynomial time.

For a boolean condition 𝑏 := (𝑥 = 𝑦), we denote that if
𝑥 = 𝑦 is satisfied, 𝑏 gets the value 1, otherwise, if 𝑥 ≠ 𝑦 and
the check fails, it gets the value 0.
Computational Hardness. When we say a problem is com-
putationally hard, we mean that given a problem instance,
generated using the security parameter ^ , for any probabilistic
algorithmA that runs in𝑂 (poly(^)) time, the probability that
A can solve the given problem instance is upper bounded by
≤ negl(^).
Polynomial Interpolation. A polynomial 𝑃 (𝑥) over a finite
field F of degree 𝑡 can be expressed as 𝑃 (𝑥) = 𝑐0 + 𝑐1𝑥 +
𝑐2𝑥2 . . . 𝑐𝑡𝑥𝑡 , where each coefficient is in F. Given any ℓ ≥ 𝑡 +1
evaluation points 𝑃 (𝑗1), . . . , 𝑃 (𝑗ℓ), where 𝑆 = { 𝑗1, . . . , 𝑗ℓ } there
are scalars _𝑖, 𝑗,𝑆 such that for any 𝑖 ∈ N: 𝑃 (𝑖) = ∑

𝑗 _𝑖, 𝑗,𝑆𝑃 (𝑗)
Importantly, the Lagrange coefficient _𝑖, 𝑗,𝑆 corresponding to
𝑗 depends only on the set 𝑆 and the evaluation point at 𝑖 .
The function Rand(·). For compact presentation we use a on-
the-fly random function, denoted Rand(·), in our Pri-VRF and
Pri-DVRF definitions. For a given domain Dom and Rng, the
function, has a table 𝑇 containing pairs (𝑥,𝑦) where 𝑥 ∈ Dom
and is initialized to ∅. It works as follows:

Rand(𝑥 ∈ Dom).
• If there exists (𝑥,𝑦) ∈ 𝑇 , return 𝑦.
• Else return a uniform random 𝑦 ←$ Rng and append
(𝑥,𝑦) to 𝑇 .

6

5.1 Universal Composability
In the UC framework, a PPT algorithm called the environment
(which is adversarial) is trying to distinguish between a real
and an ideal world. The adversary in the protocol can corrupt
parties in the real world, whereas an ideal adversary, called the
simulator, simulates the adversarial behavior in the ideal world.
The ideal world comprises an ideal functionality (a.k.a. trusted
third party) that is directly connected to all the parties, among
which the simulator fully controls the corrupt ones. The honest
ideal world parties are called dummy parties because they are
interfaces between the environment and the ideal functionality.
The objective is to design a simulator in the ideal world such
that no environment providing inputs to and observing the
outputs from the computing entities can distinguish between
the real world and the ideal world, given the adversary’s view
of both worlds. The simulator typically simulates the real
world to an instance of the real-world adversary by providing
messages on behalf of the honest parties while accessing the
ideal functionality and finally outputs whatever the adversary
outputs. The simulator can schedule messaging and outputs
in the ideal world to prevent trivial distinctions by timing. All
entities are formally modeled as instances of an interactive
Turing machine, or ITI. For a detailed formalization, we refer
to [11, 13].
Discrete Log, CDH, DDH. For a cyclic group G of prime
order 𝑝 (where |𝑝 | = 𝑂 (^)) with any elements 𝑔 and ℎ = 𝑔𝑥 ,
we denote 𝑥 = DLOG𝑔 (ℎ) to denote the discrete logarithm
of ℎ to the base 𝑔. We assume that given (𝑔, ℎ), computing
DLOG𝑔 (ℎ) is computationally hard – this is called Discrete
Log assumption over G. Furthermore, for random 𝑔, ℎ ←$ G
and random 𝛼 ←$ Z𝑝 , we say that the Computational Diffie-
Hellman (CDH) assumption holds when it is computationally
hard to compute ℎ𝛼 , given (𝑔, ℎ, 𝑔𝛼). The corresponding deci-
sional version (DDH) states that it is computationally hard to
distinguish between the tuples (𝑔, ℎ, 𝑔𝛼 , ℎ𝛼) and (𝑔, ℎ, 𝑔𝛼 , ℎ′)
for a uniform random ℎ ←$ G.
Bilinear Pairing, Co-CDH, XDH. Our constructions rely on
bilinear pairing. We consider three groups G0,G1,G𝑇 , among
which the source groups G0, G1 and G𝑇 all are multiplicative
groups of prime order 𝑝 . The corresponding generators are
denoted by 𝑔0, 𝑔1, and 𝑔𝑇 . There is an efficiently computable
map 𝑒 : G0 × G1 → G𝑇 which is:

• bilinear: for any 𝑎, 𝑏 ∈ Z𝑝 :

𝑒 (𝑔𝑎0 , 𝑔
𝑏
1) = 𝑒 (𝑔0, 𝑔

𝑏
1)
𝑎 = 𝑒 (𝑔𝑎0 , 𝑔1)𝑏 = 𝑒 (𝑔0, 𝑔1)𝑎𝑏

• non-degenerate: 𝑒 (𝑔0, 𝑔1) ≠ 1𝑇 where 1𝑇 is the (mul-
tiplicative) identity of group G𝑇 .

We require the Co-CDH assumption over bilinear groups.
The assumption states that: for uniform random 𝑔1, ℎ1 ←$
G1 and 𝑔2 ←$ G2 and uniform random 𝛼 ←$ Z𝑝 : given
(𝑔1, ℎ1, 𝑔𝛼1 , 𝑔2, 𝑔𝛼2) it is computationally hard to compute ℎ𝛼1 .
The corresponding decisional assumption, which requires the
adversary to distinguish between ℎ𝛼1 and a random ℎ′1 ←$ G1
given 𝑔1, 𝑔𝛼1 , 𝑔2, 𝑔𝛼2 as above is called the XDH assumption
and is used to build the NIZK proofs (see Sec 5.3).

Unless mentioned otherwise we assume Type-3 pairings
where not only the source groups G0 and G1 are distinct, but
also there is no efficiently computable isomorphism between
them.

5.2 Shamir’s Secret Sharing [46].
We use Shamir’s secret sharing scheme. Let 𝑝 be a prime, and
𝑛, 𝑡 be positive integers such that 𝑡 < 𝑛. An (𝑛, 𝑡, 𝑝)-Shamir’s
Secret Sharing ((𝑛, 𝑡, 𝑝)-SSS for short) scheme is a pair of al-
gorithms (Share,Recon) that work as follows.

• Share(𝑠) → (𝑠1, . . . , 𝑠𝑛). This randomized algorithm
takes any field element 𝑠 ∈ Z𝑝 as input. Then it works
as follows:
– Sample a uniform random polynomial 𝑃 (𝑥) =

𝑠 + 𝑐1𝑥 + . . . 𝑐𝑡𝑥𝑡 of degree 𝑡 . This is done by sam-
pling each of the coefficients 𝑐1, . . . , 𝑐𝑡 uniformly
at random from Z𝑝 . Note that 𝑃 (0) = 𝑠 .

– Output shares 𝑠1, . . . , 𝑠𝑛 where 𝑠𝑖 = 𝑃 (𝑖). The tu-
ple (𝑠1, . . . , 𝑠𝑛) is also denoted by Sharing(𝑠, 𝑛, 𝑡).

• Recon(𝑠 𝑗1 , . . . , 𝑠 𝑗ℓ) =: 𝑠/⊥. The reconstruction is a de-
terministic procedure which takes a bunch of shares
𝑠 𝑗1 , . . . , 𝑠 𝑗ℓ each from the field Z𝑝 as input and then
executes the following steps:
– If ℓ ≤ 𝑡 , then output ⊥;

∗ Otherwise, if ℓ > 𝑡 , use the Lagrange coeffi-
cients to compute: 𝑠 = 𝑃 (0) :=

∑
𝑘 _0,𝑘,𝑆𝑠 𝑗𝑘 ;

∗ Finally output 𝑠 .
Security: The scheme provides the following security
guarantee: For any uniform random secret 𝑠 ←$ Z𝑝 , if
(𝑠1, . . . , 𝑠𝑛) ← Share(𝑠), then any ≤ 𝑡 shares {𝑠𝑖 }𝑖∈𝑆
such that |𝑆 | ≤ 𝑡 do not reveal any information about
the secret 𝑠 . More formally, given any ≤ 𝑡 shares, 𝑠
is still distributed uniformly at random. This is an
information theoretic fact.

5.3 NIZK proofs
We require two simple and efficient non-interactive zero-knowledge
proof (NIZK) systems. Both were proven to be complete, sound,
and zero-knowledge based on the DDH assumption on the un-
derlying cyclic group G of prime order 𝑝 in the random oracle
model. However, in this paper, we use these in one of the
source groups of a triple of Type-3 bilinear pairing groups,
and hence the corresponding assumption we need is XDH. A
NIZK proof system satisfying all these properties is called a
secure NIZK proof system.
NIZK for Knowledge of Exponent [45]. Our construc-
tion uses non-interactive zero-knowledge (NIZK) proof for
knowledge of exponents. In particular, given an instance inst =
(𝑔, ℎ) ∈ G2 andwitnesswit = 𝑘 ∈ Z𝑝 such that𝑘 = DLOG𝑔 (ℎ).
Also, consider a hash function H : {0, 1}∗ → Z𝑝 . So the set of
public parameters is defined as pp := (H,G), which is provided
as an input to all algorithms below. Then the proof system
consists of the following two algorithms and a simulator:

7

• KExpProve(inst,wit) → 𝜋 . This randomized algorithm
takes an instance-witness pair (inst,wit) = ((𝑔, ℎ), 𝑘)
as input. Then it executes the following steps:
– randomly choose 𝑟 ←$ Z𝑝 ;
– compute 𝛼 := 𝑔𝑟 ∈ G;
– compute 𝑐 := H(𝑔, ℎ, 𝛼) ∈ Z𝑝 and 𝑠 := 𝑟 + 𝑘 · 𝑐 ∈
Z𝑝 .

– output the NIZK proof 𝜋 = (𝑐, 𝑠)
• KExpVer(inst, 𝜋) =: 1/0. This deterministic algorithm

takes an instance inst = (𝑔, ℎ) and a candidate proof
𝜋 = (𝑐, 𝑠) as input. Then:
– compute 𝛼 := 𝑔𝑠 · (𝑥𝑐)−1 ∈ G;
– output (𝑐 = H(𝑔, ℎ, 𝛼)) ∈ {0, 1}.

• KepSimu(inst) → 𝜋 . The simulator samples 𝑠 ←$ Z𝑝
and 𝑐 ←$ Z𝑝 , then compute 𝛼 := 𝑔𝑠 · (𝑥𝑐)−1 then
program the random oracle as: 𝑐 := H(𝑔, ℎ, 𝛼).

NIZK for Equality of Discrete Log [17]. Our construction
uses non-interactive zero-knowledge (NIZK) proof for equality
of discrete logarithms, which is quite similar to the above proof.
We highlight the crucial differences in black. In particular,
consider an instance inst = (𝑔, ℎ, 𝑥,𝑦) ∈ G4 and witness wit =
𝑘 ∈ Z𝑝 such that 𝑘 = DLOG𝑔 (𝑥) = DLOGℎ (𝑦) and a hash
function H : {0, 1}∗ → Z𝑝 . So the set of public parameters is
defined as pp := (H,G), which is provided as an input to all
algorithms implicitly. Then the proof system consists of the
following two algorithms and a simulator:

• EqProve(inst,wit) → 𝜋 . This randomized algorithm
takes a statement-witness pair (inst,wit) = ((𝑔, ℎ, 𝑥,𝑦), 𝑘)
as input. Then it executes the following steps:
– randomly choose 𝑟 ←$ Z𝑝 ;
– compute 𝛼 := 𝑔𝑟 ∈ G; 𝛽 := ℎ𝑟 ∈ G;
– compute 𝑐 := H(𝑔, ℎ, 𝑥,𝑦, 𝛼, 𝛽) ∈ Z𝑝 and 𝑠 :=
𝑟 + 𝑘 · 𝑐 ∈ Z𝑝 .

– output the NIZK proof 𝜋 = (𝑐, 𝑠)
• EqVer(inst, 𝜋) =: 1/0. This deterministic algorithm

takes a statement inst = (𝑔, ℎ, 𝑥,𝑦) and a candidate
proof 𝜋 = (𝑐, 𝑠) as input. Then:
– compute 𝛼 := 𝑔𝑠 · (𝑥𝑐)−1 ∈ G;
– compute 𝛽 := ℎ𝑠 · (𝑦𝑐)−1 ∈ G;
– output (𝑐 = H(𝑔, ℎ, 𝑥,𝑦, 𝛼, 𝛽)) ∈ {0, 1}.

• EqSimu(inst) → 𝜋 . The simulator samples 𝑠 ←$ Z𝑝
and 𝑐 ←$ Z𝑝 , then compute 𝛼 := 𝑔𝑠 · (𝑥𝑐)−1 and
𝛽 := ℎ𝑠 · (𝑦𝑐)−1. Finally, program the random oracle
as 𝑐 := H(𝑔, ℎ, 𝛼).

5.4 Our Model
We follow the Universal Composability Framework [11], in
that a real-world multi-party protocol realizes an ideal func-
tionality. Similar to the simplified UC framework [13] we as-
sume the existence of a default authenticated channel in the
real world. This significantly simplifies our definitions and
can easily be removed using an ideal authenticated channel
functionality [12].

We consider a fixed number of parties in the system and a
static corruptionmodel, that is, neither the set of participants

nor the set of corrupt parties can change during the execution.
The corrupt parties can behave in a completely malicious
manner and may collude with each other.

For more details on the UC framework see Section 5.1.

5.5 (Threshold) One-More Diffie-Hellman
Assumptions

We use a variant of threshold one-more Diffie-Hellman as-
sumptions used in [3, 36]. In particular, our assumption will
be over bilinear pairing groups, and for that, we also do not
need the gap-versions. A proof in the generic group model is
included in Appendix B.3.
Notations. We use notations from Agrawal et al. [3]. For
𝑡, 𝑓 , 𝑛 ∈ N (where 𝑓 ≤ 𝑡 < 𝑛) and q = (𝑞1, . . . , 𝑞𝑛) ∈ N𝑛 ,
defineMax𝑡,𝑓 (q) to be the largest value of ℓ for which there
exists binary vectors u1, . . . , uℓ ∈ {0, 1}𝑛 such that each u𝑖 has
hamming wight ≥ 𝑡 − 𝑓 and q satisfies q ≥ ∑ℓ

𝑖=1 u𝑖 . Next, we
define the T-BOMDH – Threshold-Bilinear One-more Diffie
Hellman assumption.

Definition 1 (T-BOMDH). Consider polynomial (in ^) size
integers 𝑛, 𝑡, 𝑓 , 𝑁 such that 𝑓 ≤ 𝑡 < 𝑛 and consider bilinear
pairing groups G1 × G2 → G𝑇 where each group has prime
order 𝑝 . Let𝑔1 and𝑔2 be two random generators of the groupsG1
andG2 respectively. Then we say that the T-BOMDH assumption
holds, if for all PPT adversaryA the probability of the following
game returning 1 is ≤ negl(^).

• Sample uniform random secret 𝛼 ←$ Z𝑝 .
• Sample random group elements 𝑔1, . . . 𝑔𝑁 ∈ G1.
• Provide 𝑔1, 𝑔𝛼1 , 𝑔2, 𝑔𝛼2 , (𝑔1, . . . , 𝑔𝑁) to A.
• On receiving {(𝑖, 𝛼𝑖)}𝑖∈[𝑓] from A choose an 𝑡-degree

polynomial 𝐷 uniformly at random such that for all
𝑖 ∈ [𝑓]: 𝐷 (𝑖) = 𝛼𝑖 and 𝐷 (0) = 𝛼 .
• Set q := 0𝑛 .
• Give the following oracle access O(𝑖, 𝑥) to the adversary:

O(𝑖, 𝑥 ∈ G)
– Increment 𝑞𝑖 by 1.
– Output 𝑥𝛼𝑖 where 𝛼𝑖 := 𝐷 (𝑖).

• On receiving {(𝑔, ℎ̄)}𝑖∈[ℓ] from A, return 1 if and only
if all of the following conditions are met:
– All 𝑔𝑖 are distinct and ℓ > Max(®𝑞).
– For all 𝑖 ∈ [ℓ] : 𝑔 ∈ {𝑔1, . . . , 𝑔𝑁 } and ℎ̄𝑖 = 𝑔𝛼𝑖 .

Discussion and BOMDH assumption. The main differ-
ence of our assumption with the versions used in [3, 36] is
that instead of a gap-version we use a bilinear pairing group.
Intuitively it has a similar effect because one can use bilin-
ear pairing to check (a specific form of) DDH across source
groups. The basic intuition of the above assumption is to give
the adversary the oracle access to individual polynomial points
in such a manner that, unless the adversary gathers enough,
that is (𝑡 + 1), evaluation points on a certain input, it can not
compute that evaluation point in the exponent of a randomly
chosen element. The complexities in notation arise as the ora-
cle has no way to distinguish whether the adversary is hiding

8

the actual input with some known randomizer (such as in-
stead of 𝑥 the adversary can query on 𝑥𝑟 to obtain the same
result for a known 𝑟). For more intuition, we refer to [3, 36].
We also use a specific version of the above assumption, when
𝑛 = 1 and 𝑓 = 𝑡 = 0, which has found more usage in the
literature (e.g. [7, 37]) and is called simply the BOMDH as-
sumption.

6 OUTPUT PRIVATE VRF (Pri-VRF)
In this section, we put forward the formal definition of Out-
put Private VRFs (Pri-VRF). Our definition follows the UC-
framework [11] and is based on ideas from the UC-based VRF
definitions provided by Coretti et al. [20]. We then present
our construction and security analysis with respect to the
proposed definition.

6.1 Definition: Pri-VRF
We consider a general setting, in thatmany instances of Pri-VRF
protocols are executed among multiple parties connected by
point-to-point authenticated (but public) channels. In a spe-
cific execution of a VRF, a party (called client) with an input
𝑥 interacts with another party (called server) with a public
verification key 𝑣𝑘 . The server holds a long-term secret key
𝑠𝑘 corresponding to 𝑣𝑘 , and at the end, the client obtains
𝑦 = 𝑉𝑠𝑘 (𝑥) and a proof 𝜋 , where𝑉 : {0, 1}∗×{0, 1}^ → {0, 1}𝛾
denotes the VRF function. The output should be pseudoran-
dom to the client. There is public verifiability, which means
that given the triple (𝑥,𝑦, 𝜋), anyone can verify whether 𝑦
is indeed equal to 𝑉𝑠𝑘 (𝑥). Furthermore, the protocol should
satisfy uniqueness, which guarantees that, there does not exist
another 𝑦′ ≠ 𝑉𝑠𝑘 (𝑥) and a proof 𝜋 ′ such that (𝑥,𝑦′, 𝜋 ′) veri-
fies successfully. These are the standard properties offered by
any VRF. In Pri-VRF, we additionally require output-privacy,
which guarantees that only the client and the server knows
the output 𝑦 in this case. Moreover, this should be guaranteed
while maintaining public verifiability with respect to the tran-
script of the communication – if the client’s message to server
is 𝑥 and server’s response is 𝑦, then the pair (𝑥,𝑦) must be
publicly verifiable as well. We call this crucial property public
pre-verifiability.
Ideal Functionality Fpvrf . All guarantees are captured by
the ideal functionality Fpvrf , which is detailed in Figure 3. The
ideal functionality interacts with parties, generally denoted
by 𝑃 and a simulator S. The phrase “any ITI”, denoted by
𝑀 , refers to either a party 𝑃 or the simulator S. The ideal
functionality keeps track of the following variables, all of
which are initialized to ⊥ (or ∅) implicitly.

(1) 𝐾𝑒𝑦𝑠 [𝑀]: contains the verification keys owned by any
ITI𝑀 . We say that a verification key 𝑣𝑘 is unique if there exists
a unique𝑀 , for which 𝑣𝑘 ∈ 𝐾𝑒𝑦𝑠 [𝑀].

(2) 𝑇 [𝑣𝑘, 𝑥]: contains entries of the form (𝑦,Π,B) corre-
sponding to a verification key 𝑣𝑘 and an input 𝑥 . Each en-
try contains an output 𝑦, and sets Π = {𝜋1, 𝜋2, . . .}, B =

{𝛽1, 𝛽2 . . .} etc. The set Π contains all proofs for the tuple
(𝑣𝑘, 𝑥,𝑦), whereas the set B contains the corresponding server

Ideal Functionality Fpvrf
Key-registration. Upon (RegKey, 𝑣𝑘, 𝑃) from S: If 𝑣𝑘 is
unique add it to 𝐾𝑒𝑦𝑠 [𝑃], send (Key, 𝑣𝑘) to 𝑃 , else exit.
Input: Upon (Input, 𝑣𝑘, 𝑥) from any client𝑄 :

(1) If 𝐼𝑛𝑝 [𝑣𝑘, 𝑥] = ⊥, and there is a 𝑃 such that 𝑣𝑘 ∈
𝐾𝑒𝑦𝑠 [𝑃], then set 𝐼𝑛𝑝 [𝑣𝑘, 𝑥] := 𝑄 and forward the
message to S; when S returns the same message, then
send it to 𝑃 .

(2) Else exit.
Evaluation: Upon (Eval, 𝑥, 𝑣𝑘) from any server 𝑃 : If
𝐼𝑛𝑝 [𝑣𝑘, 𝑥] = ⊥ or 𝑣𝑘 ∉ 𝐾𝑒𝑦𝑠 [𝑃] then exit; otherwise let
𝑄 be such that𝑄 := 𝐼𝑛𝑝 [𝑣𝑘, 𝑥] and forward the request to S.
If S returns⊥, then send (Val, 𝑣𝑘, 𝑥,⊥) to𝑄 and 𝑃 . Otherwise:

(1) When S returns (𝜋, 𝛽) , if each of them is unique ap-
pend the triple (𝑦 := Rand(𝑣𝑘, 𝑥), 𝜋, 𝛽) to 𝑇 [𝑣𝑘, 𝑥],
otherwise exit.

(2) Send (Val, 𝑣𝑘, 𝑥, 𝑦, 𝜋, 𝛽) to 𝑃 and𝑄 .
Pre-Verification: Upon (Pre-Verify, 𝑣𝑘, 𝑥, 𝛽) from any ITI
𝑀 : Send (Pre-Verify, 𝑣𝑘, 𝑥, 𝛽) to S, and upon receiving 𝜙
from S:

(1) If there is a 𝑃 for which 𝑣𝑘 ∈ 𝐾𝑒𝑦𝑠 [𝑃]and𝑇 [𝑣𝑘, 𝑥] =
(𝑦,Π, B) is defined then do as follows:
(a) If 𝛽 ∈ B set 𝑓 := 1.
(b) Else, if 𝜙 = 1 and 𝛽 is unique: then append 𝛽 into

𝑇 [𝑣𝑘, 𝑥] and set 𝑓 := 1.
(c) Else, set 𝑓 := 0.

(2) Else, set 𝑓 := 0.
(3) Finally return 𝑓 to𝑀 .

Reveal: Upon (Reveal, 𝑣𝑘, 𝑥) from any client𝑄 : send this to S,
when S returns the message, then mark (𝑣𝑘, 𝑥) as Revealed.
Unblind: Upon (Unblind, 𝑥, 𝛽) from any ITI𝑀 : Only if there
is a triple (𝑄, 𝑃, 𝑣𝑘) such that 𝛽 ∈ 𝑇 [𝑣𝑘, 𝑥] and 𝑣𝑘 ∈ 𝐾𝑒𝑦𝑠 [𝑃]
and𝑄 = 𝐼𝑛𝑝 [𝑣𝑘, 𝑥] then go to the next step, otherwise exit:

(1) If either (𝑣𝑘, 𝑥) is marked Revealed or 𝑀 = 𝑄 then
return (𝑦, 𝜋) to𝑀 where (𝑦, 𝜋) ∈ 𝑇 [𝑣𝑘, 𝑥]. Else exit.

Verification: Upon (Verify, 𝑣𝑘, 𝑥, 𝑦, 𝜋) from any𝑀 forward
this to S, and upon receiving 𝜙 from S:

(1) If there is a 𝑃 for which 𝑣𝑘 ∈ 𝐾𝑒𝑦𝑠 [𝑃] and𝑇 [𝑣, 𝑥] is
defined then do as follows:
(a) If (𝑦, 𝜋) ∈ 𝑇 [𝑣𝑘, 𝑥] set 𝑓 := 1.
(b) Else, if 𝜙 = 1 and 𝜋 is unique: then append 𝜋 to

𝑇 [𝑣𝑘, 𝑥] and set 𝑓 := 1.
(c) Else, set 𝑓 := 0.

(2) Else, set 𝑓 := 0.
(3) Finally return 𝑓 to𝑀 .

Figure 3: Ideal Functionality of Pri-VRF

messages. We say that a proof 𝜋 is unique whenever there
exists a unique pair (𝑣𝑘, 𝑥) such that 𝜋 ∈ 𝑇 [𝑣𝑘, 𝑥]. Similarly,
uniqueness of transcript and a pair (𝜋, 𝛽) are defined. When
we say append (𝜋, 𝛽) to a list𝑇 it means that updating the sets
Π := Π ∪ {𝜋} and B := B ∪ {𝛽}. When we say that the list
𝑇 [𝑣𝑘, 𝑥] is defined, that implies 𝑇 [𝑣𝑘, 𝑥] ≠ ⊥.

(3) 𝐼𝑛𝑝 [𝑣𝑘, 𝑥]: Contains identity of a party, who is the
sender/client for the execution specific to (𝑣𝑘, 𝑥). If 𝐼𝑛𝑝 [𝑣𝑘, 𝑥] =
𝑄 , that implies 𝑄 holds the input 𝑥 in the execution.

9

Some intuitions on Fpvrf . We follow the overall approach
taken by Coretti et al. and therefore do not include session id
for simplicity – note that an execution session can be indeed
uniquely identified by a pair (𝑣𝑘, 𝑥) due to the uniqueness crite-
ria, which makes a session id redundant. The major difference
with their definition comes obviously from the output-privacy
requirement. We capture that through replacing the output
with another variable 𝛽 , which works as a placeholder for the
server’s message and is used in the pre-verification. For the
same purpose, we also introduce a Reveal and Unblind phase.
A minor difference with their approach is that we merge the
Eval and RegKey queries from the simulator and any other
party as the simulator controls the corrupt parties and can
make those queries through them.

Also note that in the ideal functionality Fpvrf the output is
given to both 𝑃 and 𝑄 – at a first glance, it may appear to be
a violation of output-privacy. However, we stress that, this is
not the case. This phenomenon is specific in the centralized
setting where 𝑃 holds the whole secret-key. So, given 𝑥 it
can locally compute 𝑦. The output-privacy in this case would
guarantee secrecy of 𝑦 from eavesdroppers. Looking ahead,
in the distributed setting (i.e. Fpdvrf) 𝑦 is not given to anyone
but 𝑄 as long as at most 𝑡 parties are compromised. However,
if there are more than 𝑡 corruptions it does give away 𝑦 to the
simulator – this becomes analogous to giving 𝑦 to 𝑃 in the
centralized setting.
Real-world for Pri-VRF. In the real world we assume a
structured protocol execution. Towards that, first consider the
following set of algorithms:

• Keygen(1^) → (𝑠𝑘, 𝑣𝑘): The key-generation algorithm
outputs a pair of keys (𝑠𝑘, 𝑣𝑘) – 𝑠𝑘 is the secret key
and 𝑣𝑘 is the verification key.

• Blind(1^ , 𝑥) → (st, 𝑥): This algorithm processes the
input 𝑥 to offer a secret state st and a public output 𝑥 .

• InpVer(1^ , (𝑥, 𝑥)) =: 1/0. The input verification al-
gorithm verifies whether the pair (𝑥, 𝑥) is correctly
computed, and returns 1 if and only if the check suc-
ceeds.

• Eval(𝑣𝑘, 𝑠𝑘, 𝑥) → 𝑦: The evaluation algorithm uses
the secret key 𝑠𝑘 (and possibly also the verification
key 𝑣𝑘) on the blinded input 𝑥 to produce a blinded
output 𝑦.

• PreVer(𝑣𝑘, (𝑥, 𝑥,𝑦)) =: 1/0: The pre-verification algo-
rithm verifies whether the computed blinded value 𝑦
is correct for the pair (𝑥, 𝑥) and verification key 𝑣𝑘 .

• Unblind(𝑥,𝑦, st) =: (𝑦, 𝜋): The deterministic unblind-
ing algorithm takes a blinded output 𝑦 and a secret-
state st (typically generated during the blinding proce-
dure) plus an input 𝑥 as inputs and outputs an output-
proof pair (𝑦, 𝜋).

• Verify(𝑣𝑘, (𝑥,𝑦, 𝜋)) =: 1/0 : The verification algo-
rithm takes the public verification key 𝑣𝑘 and a pair
(𝑥,𝑦) as input and outputs a decision bit.

In a real-world with parties connected by pairwise authenti-
cated channels, any party 𝑃𝑆 may run Keygen and publish a

verification key 𝑣𝑘 while keeping the secret key 𝑠𝑘 private – 𝑃𝑆
will be called a server. Any other party 𝑃𝐶 may have an input
𝑥 and is called a client – she wants to derive a VRF 𝑦 = 𝑉𝑠𝑘 (𝑥).
A party can be a server or a client in different executions. The
client runs Blind and sends over the pair (𝑥, 𝑥) to the server,
which first checks whether the blinded input was correctly
computed using InpVer on the pair (𝑥, 𝑥). In fact, anyone else
can perform this check. If the verification succeeds, then the
server runs Eval on 𝑥 to produce𝑦 and subsequently sends that
over to 𝑃𝐶 . Anyone (may or may not be the same as 𝑃𝐶) can
run PreVer on (𝑣𝑘, 𝑥,𝑦) to publicly verify whether the server’s
computation was correct. At any point, the client may unblind
by running Unblind on (𝑥,𝑦) to get the final output-proof pair
(𝑦, 𝜋). Once the pair (𝑦, 𝜋) is made public, anyone can check
whether 𝑦 was correctly computed from 𝑥 by publicly running
Verify on (𝑥,𝑦, 𝜋). Importantly a combination of the checks
Verify, PreVer, and InpVer together allow public verification
of the full transcript (𝑥, 𝑥,𝑦,𝑦).

The real world execution is described in a protocol Π (Fig-
ure 4)

Pri-VRF Protocol Π
– Key Generation: Any party 𝑃𝑆 , who would be a server runs
key-generation (𝑠𝑘, 𝑣𝑘) ← Keygen(1^) .

– Request: Any client 𝑃𝐶 with an input 𝑥 runs (st, 𝑥) ←
Blind(1^ , 𝑥) . Then it sends 𝑥 to a particular server 𝑃𝑆 .

– Response: The server 𝑃𝑆 , on receiving a request on a blinded
input 𝑥 executes the following steps:

• Run InpVer(1^ , (𝑥, 𝑥)) , if it returns 0, then do nothing.
Else go to the next step.

• Run 𝑦 ← Part.Eval(𝑣𝑘, 𝑠𝑘, 𝑥) and then send 𝑦 back
to 𝑃𝐶 .

– Pre-verification: 𝑃𝐶 , once gets 𝑦 runs PreVer(𝑣𝑘, (𝑥, 𝑦))
– if it outputs 0, then discard 𝑦, otherwise unblind (𝑦, 𝜋) :=
Unblind(𝑦, st) . When necessary it publishes (𝑥, 𝑦, 𝜋) .

– Verification: Anyone, on input (𝑥, 𝑦, 𝜋) can run
Verify(𝑣𝑘, (𝑥, 𝑦, 𝜋)) and if and only if that returns 1
concludes that the triple is legitimate.

Figure 4: A real world Pri-VRF protocol Π.

Definition 2 (UC-security of Pri-VRF). Let Π be a pro-
tocol that works as above and provides the algorithm specifi-
cations. Then we say that Π UC-realizes the ideal functionality
Fpvrf if for any real-world static, malicious PPT adversary A,
there exists a PPT simulator S in the ideal world, such that
for all environment E:

RealΠ,A,E≈𝑐 IdealFpvrf ,S,E

Unique Input Ownership. We assume that in the protocol
each input 𝑥 is unique to a the client who provides it – there-
fore if client 𝑄 provides input 𝑥 , we call 𝑄 the owner. Without
this, one may think about the following attack. Another client
𝑄 ′ observes the input 𝑥 and separately executes a legitimate
VRF protocol to compute 𝑦 – this is not desirable. This can

10

be ensured simply by appending the unique party identity to
the input, which would be checked during evaluation by each
server – this is possible due to the presence of pairwise authen-
ticated channels.5 We also note that, in our ideal functionality,
the ownership is with respect to the session, defined by (𝑣𝑘, 𝑥),
and formalized by 𝐼𝑛𝑝 [𝑣𝑘, 𝑥]. So, our protocol would provide
a slightly stronger guarantee than what is required by the
definition.

6.2 Our Pri-VRF Construction
We now present our Pri-VRF construction. (See Figure 5.) This
construction is based on a non-threshold version of the BLS-
based DVRF proposed in [29]. We argue it satisfies our Pri-VRF
definition as captured by our ideal functionality Fpvrf . For-
mally we state the following theorem, which is proven in
Appendix B.1.

Theorem 1. Our Pri-VRF construction, described in Fig. 5,
UC-realizes Fpvrf with overwhelming probability as long as the
one-more BDH assumption (BOMDH) and the Co-CDH assump-
tion hold over the underlying bilinear groups; the hash functions
are modeled as random oracles; and the underlying NIZK proof
is secure (which requires XDH over the same groups).

Here we provide some intuitions. We consider a simpler
setting comprising of three parties: a client, a server and an
eavesdropper. And, correspondingly we consider three scenar-
ios for a particular execution with a fixed (𝑣𝑘, 𝑥), in each of
which there is exactly one corrupt party (as we argue in the
analysis that this is without loss of generality). Now, when
only the eavesdropper is corrupt, we want to guarantee ex-
actly "output-privacy". We show that in this case the simulator
is able to simulate the communication between the honest
server and the honest in a way which is computationally in-
distinguishable from the real world as long as Co-CDH holds
in the underlying bilinear pairing group and the NIZK proof
is zero-knowledge. We argue this by providing an explicit
reduction to Co-CDH (plus the zero-knowledge property of
the NIZK). The second case, in which the client is the only
corrupt party, we want to guarantee pseudorandomness of
the VRF output – this case is quite similar to the pseudoran-
domness of the Oblivious PRF and is reduced similarly to the
BOMDH assumption. The third case considers the server to
the only corrupt party – in this case since 𝑠𝑘 is leaked, the only
guarantee we can hope for is the output 𝑦 is still computed
correctly (that is "unbiased"). We provide a simulation strategy
involving careful programming of the random oracles in this
case.

7 DISTRIBUTED Pri-VRF (Pri-DVRF)
In this section we introduce the Distributed variant of Pri-VRF,
which we call Pri-DVRF in short. First, we present our UC-
based definition, first describing the ideal functionality and

5Note that, a similar issue arises in Distributed Encryption setting, as mentioned
in Agrawal et al. [4]. In fact, this was resolved exactly by appending the party
identity in presence of pairwise authenticated channels.

Ingredients
Public parameters: The security parameter ^ . An efficiently
computable Type-3 bilinear pairing 𝑒 : G1 × G2 → G𝑇 , where
the groups G1,G2,G𝑇 are multiplicative groups and each of
prime order 𝑝 . 𝑔1 and 𝑔2 are randomly chosen generators of G1
and G2 respectively. Without loss of generality we assume that
all algorithms have the public parameters as input.
Hash functions H1 : {0, 1}∗ → G1; H2 : G1 → {0, 1}𝛾 ;
H3 : {0, 1}∗ → Z𝑝 .
A secure NIZK proof system (KExpProve,KExpVer) for
knowledge of exponent in group G1. The public parameter
for this proof system is {H3,G1}.

Construction
– Keygen(1^) → (𝑠𝑘, 𝑣𝑘) : Sample 𝑠𝑘 ←$ Z𝑝 and set 𝑣𝑘 =

(𝑣𝑘1, 𝑣𝑘2) := (𝑔𝑠𝑘1 , 𝑔𝑠𝑘2) .
– Blind(1^ , 𝑥) → (st, 𝑥) : Sample a uniform random 𝜌 ←$ Z𝑝
and set𝜓 := H1 (𝑥)𝜌 . Then:

• Produce the proof ` using KExpProve on instance
(H1 (𝑥),𝜓) and witness 𝜌 .

• Set st := 𝜌 and 𝑥 := (𝜓, `) .
– InpVer(𝑥, 𝑥) =: 1/0:

• Parse (𝜓, `) := 𝑥 .
• Then run KExpVer on the instance (H1 (𝑥),𝜓) – if it

fails output 0; otherwise output 1.
– Eval(𝑣𝑘, 𝑠𝑘, 𝑥) → 𝑦:

• Parse (𝜓, `) := 𝑥 .
• Compute 𝑦 := 𝜓𝑠𝑘 .

– PreVer(𝑣𝑘, (𝑥, 𝑦)) → 1/0 : Return the check:
• 𝑒 (𝑦,𝑔2) = 𝑒 (𝑥, 𝑣𝑘2)

– Unblind(𝑦, st) =: (𝑦, 𝜋) .
• Parse 𝜌 := st
• Compute 𝜋 := 𝑦𝜌−1 .
• Compute 𝑦 := H2 (𝜋) .

– Verify(𝑣𝑘, (𝑥, 𝑦, 𝜋)) =: 1/0 : Return the check:
• (𝑒 (H1 (𝑥), 𝑣𝑘2) = 𝑒 (𝜋,𝑔2)) ∧ (H2 (𝜋) = 𝑦)) .

Figure 5: Our Pri-VRF construction

later providing a specifically structured real-world execution.
Later in this section, we provide our Pri-DVRF construction.

7.1 Definition: Pri-DVRF
In the distributed setting, no server alone holds the entire key.
Instead, the VRF secret-key 𝑠𝑘 is distributed among multiple
parties. Let us call the set of 𝑛 servers S = {𝑃1, . . . , 𝑃𝑛} who
jointly hold a VRF key 𝑠𝑘 jointly in a 𝑡 out of 𝑛 fashion, for
example using a secret-sharing scheme.6 Now, even if 𝑡 servers
are compromised (and potentially collude with each other), the
key is hidden from the adversary. Any client then can interact
with 𝑡 + 1 servers to evaluate 𝑦 = 𝑉𝑠𝑘 (𝑥) and an associated
proof 𝜋 privately, such that no one except the client knows 𝑦
or 𝜋 . More concretely, the client sends a message containing
the input 𝑥 to all servers in the set S. As long as 𝑡 + 1 replies
6The access structure can be generalized to other settings, but in this paper, we
stick to 𝑡 out of 𝑛 threshold access structure.

11

correctly with blinded responses, the client should be able to
aggregate the responses to compute an aggregated blinded
response. The client later can unblind to obtain the output-
proof pair (𝑦, 𝜋), where 𝑦 must be pseudorandom and publicly
verifiable (and remains so even if 𝑠𝑘 is completely leaked) even
when up to 𝑡 parties are controlled by a malicious adversary.
However, in addition to these standard VRF properties, we
need more properties in the distributed setting. First, we need
consistency which means that the final output 𝑦 is indepen-
dent of the participating set. We also need availability/liveness
which means that no matter what the malicious parties do,
the protocol will execute correctly (a.k.a. guaranteed output
delivery). These two requirements are easy to achieve, the
first one by using a 𝑡 out of 𝑛 secret sharing scheme, such as
Shamir’s [46] (which we use in our constructions) and the sec-
ond one by assuming 𝑛 ≥ 2𝑡 + 1, which is ensured within our
ideal functionality Fpdvrf. Another requirement, considered in
prior works [29], is robustness, which guarantees that if the
aggregation is successful, then the final verification would also
be successful – this is captured within the ideal functionality
by a partial pre-verification mechanism which ensures that
any incorrect response from a server can be caught during
aggregation. Like in the Pri-VRF setting, we assume multi-
ple parties, any of which can play the role of server or client
for any particular execution. A group of parties can collabo-
rate to execute a key-generation to have a common (public)
verification key 𝑣𝑘 and shares 𝑠𝑘1, 𝑠𝑘2, . . . of a secret-key 𝑠𝑘 .
Ideal Functionality Fpdvrf . All guarantees, informally de-
scribed above, are captured by the ideal functionality Fpdvrf
in Figure 6. The ideal functionality interacts with parties, de-
noted generally by 𝑃 or 𝑄 and a simulator S. Sometimes, to
stress on to the distributed aspect, servers are denoted as 𝑃𝑖 .
A set of 𝑛 servers 𝑃1, 𝑃2 . . . , 𝑃𝑛 is denoted by S, which plays
a similar role to that of a single server in Fpvrf . Sometimes
to distinguish a client is denoted by 𝑄 . The phrase “any ITI”,
denoted by𝑀 , refers to either a party or the simulator.

The ideal functionality keeps track of the following variable,
all of which are initialized to ⊥ (or ∅) implicitly.

(1) 𝐾𝑒𝑦𝑠 [𝑀], 𝐾𝑒𝑦𝑠 [S]: contains the public verification keys
owned by any entity𝑀 or a set of servers S = {𝑃1, . . . , 𝑃𝑛}.
We note that, if 𝑣𝑘 ∈ 𝐾𝑒𝑦𝑠 [S] then 𝑣𝑘 ∈ 𝐾𝑒𝑦𝑠 [𝑃𝑖]
for each 𝑃𝑖 ∈ S. We say that a verification key 𝑣𝑘 is
unique if there exists a unique set of servers S, for
which 𝑣𝑘 ∈ 𝐾𝑒𝑦𝑠 [S] – this is extended from Fpvrf ,
which considers uniqueness corresponding to parties.

(2) 𝑇 [𝑣𝑘, 𝑥]: contains entries of the form (𝑦, (𝜋, 𝛽), (𝜋 ′, 𝛽′), . . .)
corresponding to a verification key 𝑣𝑘 and an input 𝑥
exactly like in the case for Pri-VRF. The uniqueness is
also defined exactly in the same manner.

(3) 𝑇part [𝑣𝑘, 𝑥, 𝑃𝑖] : extends the above definition to the
partial setting, where each partial list corresponds to a
server 𝑃𝑖 . A list 𝑇part contains entries 𝛽, 𝛽′, . . ., which
is slightly different from lists 𝑇 . Uniqueness of 𝛽 is
defined naturally with respect to the triple (𝑣𝑘, 𝑥, 𝑃𝑖).

Note that, since 𝑣𝑘 is unique to a set of servers S, we
do not need to specify the set of servers.

(4) 𝐼𝑛𝑝 [𝑣𝑘, 𝑥]: denotes the party (client) who sent the pair
(𝑣𝑘, 𝑥) for evaluation. This contains exactly one ele-
ment, unless marked ⊥ (while undefined) by default.

The real world execution. Consider the following set of
algorithms exclusive to the distributed setting:

• Keygen(1^ , 𝑛, 𝑡) → (𝑣𝑘, 𝑠𝑘1, . . . , 𝑠𝑘𝑛): The key-generation
algorithm (implemented by a DKG protocol) outputs
a verification key 𝑣𝑘 and 𝑛 shares 𝑠𝑘1, . . . , 𝑠𝑘𝑛 of the
secret-key 𝑠𝑘 where the sharing is 𝑡 out of 𝑛 threshold.

• Blind(1^ , 𝑥) → (st, 𝑥): This algorithm processes an
input 𝑥 to offer a secret state st and a public output 𝑥 .

• InpVer(1^ , (𝑥, 𝑥)) =: 1/0. The input verification algo-
rithm verifies whether a pair (𝑥, 𝑥) is correctly formed
and returns 1 if and only if the check succeeds.

• Part.Eval(𝑣𝑘, 𝑠𝑘𝑖 , 𝑥) → 𝑦𝑖 : The partial evaluation al-
gorithm uses the partial secret-key 𝑠𝑘𝑖 on the blinded
input 𝑥 to produce a blinded partial output 𝑦𝑖 .

• PartPreVer(𝑣𝑘, (𝑥,𝑦𝑖)) =: 1/0 : There is a partial pre-
verification algorithm which verifies whether the com-
puted blinded partial value 𝑦𝑖 is correct for the input
𝑥 and verification key 𝑣𝑘 .
• Aggregate(𝑣𝑘, {(𝑦𝑖)}𝑖∈𝑆) =: 𝑦. The aggregation algo-

rithm gathers a set of blinded values to produce an
aggregated blinded value 𝑦.

• PreVer(𝑣𝑘, (𝑥,𝑦)) =: 1/0 : There is a pre-verification
algorithm, similar to PVRF, which verifies whether the
computed blinded value 𝑦 is correct for the blinded
input 𝑥 and verification key 𝑣𝑘 .

• Unblind(𝑦, st) =: (𝑦, 𝜋). The deterministic unblinding
algorithm takes a blinded output 𝑦 and a secret-state
st (typically generated during the blinding procedure)
and then outputs an output-proof pair (𝑦, 𝜋).

• Verify(𝑣𝑘, (𝑥,𝑦, 𝜋)) =: 1/0 : The verification algo-
rithm takes the public verification key 𝑣𝑘 and a pair
(𝑥,𝑦) as input and outputs a decision bit.

In the real-world, parties are connected by pairwise authen-
ticated channels. A set of 𝑛 parties 𝑃1, 𝑃2, . . . , 𝑃𝑛 successfully
run a distributed key-generation protocol,7that securely im-
plements Keygen such that the verification key 𝑣𝑘 is made
public and each 𝑃𝑖 gets a secret key share 𝑠𝑘𝑖 . Let us denote
this set of parties by S := {𝑃1, . . . , 𝑃𝑛}. At any point, a client
𝑄 with an input 𝑥 may run Blind to generate 𝑥 and subse-
quently sends over (𝑥, 𝑥) for evaluation to the servers in S
(with verification key 𝑣𝑘). Server 𝑃𝑖 in set S first runs the
input-verification InpVer on (𝑥, 𝑥), and if that succeeds, runs
Part.Eval on (𝑥, 𝑥) with (𝑣𝑘, 𝑠𝑘𝑖) to generate a blinded partial
output 𝑦𝑖 , which it sends back. The values (𝑦1, 𝑦2, . . .) are sup-
posed to be collected by an aggregator 𝐴 (which may or may
not be the same as 𝑄 or any 𝑃𝑖), who then runs PartPreVer on
7In the description, we do not present a distributed key-generation (DKG)
formally. We stress that it would be straightforward to extend the construction
in a hybrid model that uses an ideal DKG functionality, for example, a variant
of the one provided in [36]. The changes in the proof will also be analogous to
theirs. We avoid this for simplicity of the exposition.

12

Ideal Functionality Fpdvrf
Key Generation. Upon (KeyGen, 𝑣𝑘, S) where S ⊆ {𝑃1, . . . , 𝑃𝑛 } from S when 𝑣𝑘 is unique:

(1) Define CS := C ∩ S and HS := S \ CS and set 𝑛S := |S |
(2) If 𝑛S < 2𝑡 + 1, then exit the procedure.
(3) Append 𝑣𝑘 to 𝐾𝑒𝑦𝑠 [S] and for each 𝑃𝑖 ∈ S 𝐾𝑒𝑦𝑠 [𝑃𝑖].
(4) If |CS | ≥ 𝑡 + 1, then mark S as Corrupt.
(5) Send (KeyGen, 𝑣𝑘, S) to each 𝑃𝑖 ∈ HS.

Input: Upon (Input, 𝑣𝑘, 𝑥) from any client𝑄 :
(1) If 𝐼𝑛𝑝 [𝑣𝑘, 𝑥] = ⊥, and there is a 𝑃 such that 𝑣𝑘 ∈ 𝐾𝑒𝑦𝑠 [𝑃], then set 𝐼𝑛𝑝 [𝑣𝑘, 𝑥] := 𝑄 and forward the message to S; when S

returns the same message, then send it to 𝑃 .
(2) Else exit.

Partial Evaluation. Upon (PartEval, 𝑣𝑘, 𝑥) from any 𝑃𝑖 : If 𝑣𝑘 ∉ 𝐾𝑒𝑦𝑠 [𝑃𝑖] or 𝐼𝑛𝑝 [𝑣𝑘, 𝑥] = ⊥ then exit; otherwise send
(PartEval, 𝑣𝑘, 𝑥, 𝑃𝑖) to S. If S returns ⊥ then send ⊥ to 𝑃𝑖 ; otherwise:

(1) When S returns 𝛽𝑖 , then if it is unique then append it to𝑇part [𝑣𝑘, 𝑥, 𝑃𝑖]; otherwise exit.
(2) Send 𝛽𝑖 to 𝑃𝑖 .

Partial Pre-Verification: Upon (PartPreVerify, 𝑣𝑘, 𝑥, 𝛽𝑖) from any𝑀 , forward this to S, and when S returns 𝜙 , then do as follows:
(1) If there is a party 𝑃𝑖 such that 𝑣𝑘 ∈ 𝐾𝑒𝑦𝑠 [𝑃𝑖] and𝑇part [𝑣𝑘, 𝑥, 𝑃𝑖] is defined then:

(a) If 𝛽𝑖 ∈ 𝑇part [𝑣𝑘, 𝑥, 𝑃𝑖] then set 𝑓 = 1
(b) Else if 𝜙 = 1 and 𝛽𝑖 is unique, then append 𝛽𝑖 into𝑇part [𝑣𝑘, 𝑥, 𝑃𝑖] and set 𝑓 := 1.
(c) Else set 𝑓 := 0

(2) Otherwise set 𝑓 := 0.
(3) Finally return 𝑓 to𝑀 .

Aggregation: Upon (Aggregate, 𝑣𝑘, 𝑥, 𝛽1, . . . , 𝛽ℓ) from any ITI𝑀 : if ℓ < 𝑡 + 1, then return ⊥ to𝑀 , else forward the message to S, when
S returns 𝛽 and 𝜋 , if either of 𝛽 or 𝜋 is not unique, then exit, otherwise:

(1) Initialize a temporary list 𝐽 := ∅ and append 𝛽𝑖 into 𝐽 only if there is a 𝑃𝑖 for which 𝛽𝑖 ∈ 𝑇part [𝑣𝑘, 𝑥, 𝑃𝑖]. If | 𝐽 | ≤ 𝑡 , then append
(𝑦 := Rand(𝑣𝑘, 𝑥), 𝜋, 𝛽) into𝑇 [𝑣𝑘, 𝑥].

(2) Return 𝛽 to𝑀 .
(3) If 𝑣𝑘 ∈ 𝐾𝑒𝑦𝑠 [S] such that S is marked Corrupt, then return (𝑦, 𝜋) to S.

Pre-Verification: Upon (PreVerify, 𝑣𝑘, 𝑥, 𝛽) from any𝑀 , forward this to S, and when S returns 𝜙 , do:
(1) If𝑇 [𝑣𝑘, 𝑥] is defined then:

(a) If 𝛽 ∈ 𝑇 [𝑣𝑘, 𝑥] then set 𝑓 = 1
(b) Else if 𝜙 = 1 and 𝛽 is unique, then append 𝛽 into𝑇 [𝑣𝑘, 𝑥] and set 𝑓 := 1.
(c) Else set 𝑓 := 0

(2) Otherwise set 𝑓 := 0.
(3) Finally return 𝑓 to𝑀 .

Reveal: Upon (Reveal, 𝑣𝑘, 𝑥) from any client𝑄 : send this to S, when S returns the message, mark (𝑣𝑘, 𝑥) as Revealed.
Unblind: Upon (Unblind, 𝑥, 𝛽) from any ITI 𝑀 : Only if there is a triple (𝑄, S, 𝑣𝑘) such that 𝛽 ∈ 𝑇 [𝑣𝑘, 𝑥] and 𝑣𝑘 ∈ 𝐾𝑒𝑦𝑠 [S] and
𝑄 = 𝐼𝑛𝑝 [𝑣𝑘, 𝑥] then go to the next step, otherwise exit:

(1) If either (𝑣𝑘, 𝑥) is marked Revealed or𝑀 = 𝑄 then return (𝑦, 𝜋) to𝑀 where𝑇 [𝑣𝑘, 𝑥] = (𝑦, · · ·) and 𝑃𝑟𝑣 [𝛽] = 𝜋 . Else exit.
Verification: Upon (Verify, 𝑣𝑘, 𝑥, 𝑦, 𝜋) from any𝑀 forward this to S, and upon receiving 𝜙 from S:

(1) If there is a S for which 𝑣𝑘 ∈ 𝐾𝑒𝑦𝑠 [S] and𝑇 [𝑣, 𝑥] is defined then do as follows:
(a) If (𝑦, 𝜋) ∈ 𝑇 [𝑣𝑘, 𝑥] set 𝑓 := 1.
(b) Else, if 𝜙 = 1 and 𝜋 is unique: then append 𝜋 to𝑇 [𝑣𝑘, 𝑥] and set 𝑓 := 1.
(c) Else, set 𝑓 := 0.

(2) Else, set 𝑓 := 0.
(3) Finally return 𝑓 to𝑀 .

Figure 6: Ideal Functionality of Pri-DVRF

each 𝑦𝑖 with respect to (𝑣𝑘, 𝑥), and if there are at least 𝑡 many
correct such values, then it may produce a blinded output 𝑦
(otherwise it outputs ⊥). The client, when obtaining 𝑦, may
first run PreVer to check whether the aggregation was done
correctly (in particular when 𝐴 ≠ 𝑄), and if that succeeds, it
may unblind usingUnblind to obtain (𝑦, 𝜋). The triple (𝑥,𝑦, 𝜋)
can be publicly verified at any point by anyone to confirm that

𝑦 was correctly produced. Furthermore, combining this with
InpVer, PartPreVer, and PreVer anyone can verify whether this
value is computed via a particular interaction defined by the
entire transcript (𝑥, 𝑥, {𝑦𝑖 })𝑖, 𝑦,𝑦, 𝜋). The real world execution
is described in a protocol Π (Figure 7)

13

Pri-DVRF Protocol Π
– DKG: Parties in set S, that are 𝑃1, . . . , 𝑃𝑛 run a distributed
key-generation, after which each party 𝑃𝑖 obtains a secret
key 𝑠𝑘𝑖 and everyone gets a public key 𝑣𝑘 as a output of
Keygen(1^ , 𝑛, 𝑡) .

– Request: Any party𝑄 (which may or may not be part of 𝑆)
with an input 𝑥 runs (st, 𝑥) ← Blind(1^ , 𝑥) . Then it sends 𝑥
to all parties 𝑃1, . . . , 𝑃𝑛 in set S.

– Response: Each party 𝑃𝑖 , on receiving a request on a blinded
input 𝑥 executes the following steps:

• Run InpVer(1^ , (𝑥, 𝑥)) , if it returns 0, then do nothing.
Else go to the next step.

• Run 𝑦𝑖 ← Part.Eval(𝑣𝑘, 𝑠𝑘𝑖 , 𝑥) and then send 𝑦 to an
aggregator 𝐴 (which may or may not be the same as
𝑄 or any 𝑃𝑖).

– Aggregation: The aggregator 𝐴, once collects the values
(𝑦1, 𝑦2, . . .) executes the following steps:

• Initiate a set 𝑆 := ∅.
• For each 𝑖 run PartPreVer(𝑣𝑘, (𝑥, 𝑦𝑖)) – if it returns

1, then append 𝑖 into 𝑆 , else do nothing.
• If 𝑆 contains at least 𝑡 + 1 elements, then run 𝑦 :=

Aggregate(𝑣𝑘, {𝑦𝑖 }𝑖∈𝑆) .
• If 𝐴 ≠ 𝑄 then send 𝑦 to𝑄 , otherwise store 𝑦.

– Pre-verification: 𝑄 , once gets 𝑦 runs PreVer(𝑣𝑘, (𝑥, 𝑦)) –
if it outputs 0, then discard 𝑦, otherwise unblind (𝑦, 𝜋) :=
Unblind(𝑦, st) . When necessary it publishes (𝑥, 𝑦, 𝜋) .

– Verification: Anyone, on input (𝑥, 𝑦, 𝜋) can run
Verify(𝑣𝑘, (𝑥, 𝑦, 𝜋)) and if and only if that returns 1
concludes that the triple is legitimate.

Figure 7: A real world Pri-DVRF protocol Π.

Definition 3 (Distributed Pri-VRF (Pri-DVRF)). Let Π
be a protocol that works as above and provide the algorithm
specifications. We say that Π UC-realizes the ideal functional-
ity Fpdvrf if for any static, malicious PPT adversary A in the
real world, there exists a PPT simulator S in the ideal world,
such that for all environment E: RealΠ,A,E≈𝑐 IdealFdpvrf ,S,E

Remark 2. Note that our aggregation is a public procedure,
and therefore can be done by any of the nodes – this is similar
to all threshold protocols. Consequently, compromising the ag-
gregator does not allow one to break any security property (in
particular, public verifiability ensures that a malicious aggrega-
tion is not possible). However, if we rely on a single aggregator
node, that may hurt the liveness/availability. To remedy that, one
may either deploy t+1 aggregator nodes (to ensure at least one
honest aggregator node) or design a simple reward mechanism
to incentivize aggregation. We do not formalize this here.

7.2 Our Pri-DVRF construction
We present our Pri-DVRF construction in this section. The con-
struction is a natural extension to our centralized Pri-VRF con-
struction (cf. Figure 5) except that the partial evaluation now
produces a zero-knowledge proof of correct partial computa-
tion, which is verified by the partial pre-verification algorithm.

Our construction is presented in Figure 8. The construction is
based on the GLOW-DVRF, proposed in [29]. This construc-
tion is based on a non-threshold version of the BLS-based
DVRF proposed in [29].

We argue our Pri-DVRF construction satisfies our Pri-DVRF
definition as captured by our ideal functionality Fpdvrf. For-
mally we state the following theorem, which is proven in the
Appendix B.2.

Theorem 3. Our Pri-DVRF construction, described in Fig. 8,
UC-realizes Fpdvrf with overwhelming probability as long as
the threshold one-more BDH assumption (T-BOMDH) and the
co-CDH assumption hold over the underlying bilinear groups;
the hash functions are modeled as random oracles; and the NIZK
proof systems are secure (that, in turn, require XDH).

The proof extends naturally from the centralized case. How-
ever, each time we need to deal with up to 𝑡 malicious servers.
However, since they do not possess the secret-key, this case
essentially becomes analogous to the scenario in the central-
ized setting, when the server is honest. For example, when
the client is honest and there is at most 𝑡 server corruption,
output privacy must be guaranteed. To argue that, now we
reduce this to a threshold variant of the BOMDH problem,
called T-BOMDH. Analyses of the other cases are similar to
the centralized setting.

Remark 4. We stress that the VRF servers do not need to
maintain states. To ensure uniqueness of the input, the smart
contract crafts an input (INP as detailed in Appendix A) which is
used by the VRF servers – this is done precisely to avoid this sort
of “statefulness”, because among other things, this input contains
the identity of the requester. Hence, unique ownership is easily
ensured by a signature (or, more generally, an authenticated
channel a la DiSE [4]) which can be checked by the VRF servers.

Another construction based on Dfinity-DVRF. We note
that the NIZK proof of equality computed in the partial eval-
uation could just be omitted, if each 𝑔𝑠𝑘𝑖2 was publicly avail-
able, and PartPreVer was performed using bilinear pairing
𝑒 (𝑥, 𝑔𝑠𝑘𝑖2) = 𝑒 (𝑦,𝑔2). However, this would incur concrete com-
putation overhead because verifying a NIZK proof of equality
amounts to 4 exponentiations in the group G1, and that is
about 2.5𝑥 more efficient than a single bilinear pairing veri-
fication. A DVRF scheme constructed using this alternative
approach was deployed by Dfinity [34] and was analyzed by
Galindo et al. [29]. We stress that adding output-privacy to
that construction is straightforward. Moreover, the issue of
strong vs weak pseudorandomness for the DVRF construc-
tions does not seem to appear for the respective Pri-DVRF
constructions. Recall that, in the same paper the authors show
that Dfinity-DVRF can not be proven strongly pseudorandom,
which allows an adversary to make honest partial evaluation
queries on the challenge input (the weaker notion was called
simply pseudorandomness and does not allow those queries).
And they showed that GLOW-DVRF can actually be proven to
satisfy the stronger notion. For the corresponding Pri-DVRF
construction, this does not seem to be the case, because our

14

Ingredients
Public parameters: The security parameter^ , the total number
of parties 𝑛, a threshold 𝑡 < ⌈𝑛/2⌉. An efficiently computable
Type-3 bilinear pairing 𝑒 : G1 × G2 → G𝑇 , where the groups
G1,G2,G𝑇 are multiplicative groups and each of prime order
𝑝 . 𝑔1 and 𝑔2 are randomly chosen generators of G1 and G2
respectively.
Hash functions H1 : {0, 1}∗ → G1; H2 : G1 → {0, 1}𝛾 ;
H3 : {0, 1}∗ → Z𝑝 .
A Shamir’s secret sharing scheme (that has two algorithms
Share and Recon).
A secure NIZK proof system (EqProve, EqVer) for equality
of discrete log over group G1. The public parameter for this
NIZK system is given by {H3,G1} .
A secure NIZK proof system (KExpProve,KExpVer) for
knowledge of exponent in group G1. The public parame-
ter for this proof system is {H3,G1}.

Construction
– Keygen(1^ , 𝑛, 𝑡) → (𝑣𝑘, 𝑠𝑘1, . . . , 𝑠𝑘𝑛) :

• Sample 𝑠𝑘 ←$ Z𝑝 ; generate (𝑠𝑘1, . . . , 𝑠𝑘𝑛) ←$
Share𝑛,𝑡,𝑝 (𝑠𝑘) .

• Set 𝑝𝑘 := 𝑔𝑠𝑘2 , and ∀ 𝑖 ∈ [𝑛]: 𝑣𝑘𝑖 := 𝑔𝑠𝑘𝑖1 .
• Set 𝑣𝑘 := (𝑝𝑘, 𝑣𝑘1, . . . , 𝑣𝑘𝑛) .

– Blind(1^ , 𝑥) → (st, 𝑥) : Sample a uniform random 𝜌 ←$ Z𝑝
and set𝜓 := H1 (𝑥)𝜌 . Then:

• Produce the proof ` using KExpProve on instance
(H1 (𝑥),𝜓) and witness 𝜌 .

• Set st := 𝜌 and 𝑥 := (𝜓, `) .
– InpVer(𝑥, 𝑥) =: 1/0:

• Parse (𝜓, `) := 𝑥 .
• Then run KExpVer on the instance (H1 (𝑥),𝜓) – if it

fails output 0; otherwise output 1.
– Part.Eval(𝑣𝑘, 𝑠𝑘𝑖 , 𝑥) → 𝑦𝑖 : Parse (𝜓, `) := 𝑥 and:

• Compute 𝑤𝑖 := 𝜓𝑠𝑘𝑖 .
• Run EqProve on the instance (𝜓, 𝑤𝑖 , 𝑔1, 𝑣𝑘𝑖) with wit-

ness 𝑠𝑘𝑖 to produce proof of equal exponent 𝜋𝑖 .
• Set 𝑦𝑖 := (𝑤𝑖 , 𝜋𝑖) .

– PartPreVer(𝑣𝑘, (𝑥, 𝑦)) =: 1/0 : Output the result of EqVer on
the instance (𝜓, 𝑤𝑖 , 𝑔1, 𝑣𝑘𝑖) and proof 𝜋 where (𝜓, `) := 𝑥 and
(𝑤, 𝜋) := 𝑦.

– Aggregate(𝑣𝑘, { (𝑦𝑖) }𝑖∈𝑆) =: 𝑧. If |𝑆 | < 𝑡 + 1 then output ⊥,
otherwise run the Lagrange interpolation in the exponent on
𝑤𝑖 ’s where (𝑤𝑖 , 𝜋𝑖) := 𝑦𝑖 :

• Compute 𝑦 :=
∏

𝑖∈𝑆 𝑤
_𝑖,𝑆
𝑖

– PreVer(𝑣𝑘, (𝑥, 𝑦)) → 1/0 : Return the check:
• 𝑒 (𝑦,𝑔2) = 𝑒 (𝑥, 𝑣𝑘2)

– Unblind(𝑦, st) =: (𝑦, 𝜋) .
• Parse 𝜌 := st
• Compute 𝜋 := 𝑦𝜌−1 .
• Compute 𝑦 := H2 (𝜋) .

– Verify(𝑣𝑘, (𝑥, 𝑦, 𝜋)) =: 1/0 : Return the check:
• (𝑒 (H1 (𝑥), 𝑣𝑘2) = 𝑒 (𝜋,𝑔2)) ∧ (H2 (𝜋) = 𝑦)) .

Figure 8: Our Pri-DVRF Construction

Input-Generation Partial-Eval.
GLOW-DVRF (MCL) - 253.304 `sec
Pri-DVRF (MCL) 307.079 `sec 403.059 `sec

GLOW-DVRF (RELIC) - 1.30304 msec
Pri-DVRF (RELIC) 1.67658 msec 2.5978 msec

Table 1: Average time taken for each step for GLOW-
DVRF and Pri-DVRF for the BN256 curve, over 100 iter-
ations. In the Pri-DVRF construction, the partial evalu-
ation includes verifying the ZKP forwarded by the re-
quester.

approach relies on T-BOMDH oracles for simulating partial
evaluation queries.

8 PERFORMANCE ANALYSIS
We evaluate the performance of our Pri-DVRF construction
and compare it with the GLOW-DVRF [29] construction. We
implement [2] our Pri-DVRF by extending the GLOW-DVRF
framework [28, 29] written in C++. The framework supports
mcl [1] and RELIC [6] cryptographic libraries.

In our Pri-DVRF construction, for a given input, the re-
quester generates a random blinding value and a NIZK proof
of the correctness of the blinded input. The proof is a Schnorr
signature-based proof of knowledge of the DLog exponent.
The proof consists of two elements, one scalar and one group
G1 element. After receiving the blinded input, each VRF node
verifies the zero-knowledge proof before computing the partial
evaluation of the VRF. The requester receives the aggregated
evaluation and unblinds the output private VRF using the pre-
computed blinding value to obtain the final VRF output. The
NIZK proof is the only additional input forwarded to the VRF
nodes in Pri-DVRF protocol when compared to the non-private
version of the protocol. The proof amounts to an overhead of
513 bits.

We benchmark the different steps of the VRF computation
using mcl [1] and RELIC libraries [6] for the BN256 curve. We
run our single-threaded implementation on Mac OSX 2015
with an intel i7-3.1GHz processor with 16GB RAM. With the
MCL library, the requester takes ∼ 307` sec on an average for
computing 𝐻 (𝑥)𝑟 (for the input 𝑥 and the blinding factor 𝑟)
and the zero-knowledge proof of exponent 𝑟 . Each VRF node
verifies the zero-knowledge proof (ZKP) and then computes
the 𝐻 (𝑥)𝑟 ·𝑠𝑘𝑖 for the secret share 𝑠𝑘𝑖 . The partial evaluation,
including verifying the ZKP per node, takes ∼ 403` sec. Un-
blinding by the requester involves one exponentiation and
takes on an average ∼ 146`sec. The GLOW-DVRF which is
non-private, does not involve any input blinding, and the in-
put message 𝑥 is forwarded to the VRF nodes. Each VRF node
computes the partial evaluation 𝐻 (𝑥)𝑠𝑘𝑖 , which takes ∼ 253`
sec per node on average.

The computation times for input-blinding at the requester
and partial evaluation at the VRF node have been presented in
table 1; the table provides the timings for the operations using
both the mcl and the RELIC libraries. The reported values are

15

n Total
GLOW-DVRF (MCL) 8 1.71 msec
Pri-DVRF (MCL) 8 1.89 msec

GLOW-DVRF (RELIC) 8 10.39 msec
Pri-DVRF (RELIC) 8 11.71 msec

GLOW-DVRF (MCL) 16 2.97 msec
Pri-DVRF (MCL) 16 3.12 msec

GLOW-DVRF (RELIC) 16 18.42 msec
Pri-DVRF (RELIC) 16 19.89 msec

GLOW-DVRF (MCL) 32 5.47 msec
Pri-DVRF (MCL) 32 5.66 msec

GLOW-DVRF (RELIC) 32 35.63 msec
Pri-DVRF (RELIC) 32 36.77 msec

GLOW-DVRF (MCL) 64 10.46 msec
Pri-DVRF (MCL) 64 10.66 msec

GLOW-DVRF (RELIC) 64 72.87 msec
Pri-DVRF (RELIC) 64 74.34 msec

Table 2: Average time taken to evaluate Pri-DVRF and
GLOW-DVRF forvarying 𝑛. The time is indicated by the
summation of the partial evaluation time and the time
to combine the evaluations of the VRF nodes. Network
communication delays are not considered here.

taken as a mean over 100 iterations over each operation. A
smart contract would verify the VRF output; though we do
not deploy the smart contract, our estimates indicate that the
gas cost for the VRF verification on the BN256 curve would
be ∼ 250𝑘 gwei (more on the gas cost below).

We also benchmark the average time taken to generate one
PVRF value for varying VRF committee sizes. Table 2 indicates
the average total time taken to generate one PRVF value. The
time for partial evaluation by each VRF node is constant ir-
respective of the committee size. The table also indicates the
time taken to combine the partial evaluations. The total time
without network delays is the summation of the partial eval-
uation time and the time taken to aggregate the evaluations
of the VRF committee nodes. That involves verifying each
proof of the correctness of the evaluation and then combin-
ing the partial outputs through Lagrange interpolation. This
process is similar to both the Pri-DVRF and the non-private
GLOW-DVRF protocols. Only the partial evaluation of the
nodes differs as far as the VRF committee is concerned. Since
the overhead is just checking a Schnorr-based zero-knowledge
proof, the time difference between the two approaches is mi-
nor.

To simulate a real-network deployment, we also induce
network delays of ∼ 120 msec between each pair of nodes and
compute the total time taken to generate the aggregate VRF
output. Table 3 denotes the average time taken to evaluate
Pri-DVRF for different committee sizes. Each VRF node for-
wards the partial evaluation to all the other committee nodes,
and each produces the aggregated output value.
Estimate of the gas cost. The base cost for creating and
deploying a smart contract is 32𝑘 gwei on Ethereum. In the
FlexiRand protocol, the partial evaluations by each VRF node

n Total
MCL 8 0.159 sec
RELIC 8 0.171 sec
MCL 16 0.244 sec
RELIC 16 0.277 sec
MCL 32 0.399 sec
RELIC 32 0.695 sec
MCL 64 1.08 sec
RELIC 64 2.33 sec

Table 3: Average time taken to evaluate Pri-DVRF for
varying𝑛with artificial network delay of 120 msec added
to the communication.

are combined, and the blinded VRF output along with the
proof are published through the smart contract. The smart
contract verifies the proof before publishing it, which is the
pre-verification step of the protocol. It performs a pairing-
based verification of the blinded VRF output. Since the blinded
value is of the form 𝐻 (𝑥)𝑟 , the verification simply involves
the equality of two pairing computations: 𝑒 (𝐻 (𝑥)𝑟 , 𝑔𝑠𝑘2) ==
𝑒 (𝐻 (𝑥)𝑟 ·𝑠𝑘 , 𝑔2). It must be noted that in the non-private ver-
sion while performing the pairing check (𝑒 (𝐻 (𝑥), 𝑔𝑠𝑘2) ==

𝑒 (𝐻 (𝑥)𝑠𝑘 , 𝑔2)), the hash value 𝐻 (𝑥) is computed on the smart
contract using𝑥 . In Pri-DVRF, this hash is not computed, as the
(blinded) input value is 𝐻 (𝑥)𝑟 , and the verification involves
just two pairings. Each pairing operation costs 108K gwei;
hence, the pairing-based verification which involves two pair-
ing operations, costs ∼ 250𝐾 gwei including 20K gwei for stor-
ing a 256 bit value. The requester forwards the input message
to the smart contract and after obtaining the formatted INP
(141 bytes as per the description given in the full version [5]),
blinds it and forwards it along with the proof of correctness.
Compared to the GLOW-based non-private case, this consti-
tutes two additional transactions amounting to ∼ 42K gwei.
The storage of the additional bit-length of the proof amounts
to an additional gas cost of 40K gwei. The total gas cost for
each request in the GLOW-based non-private version would
be ∼ 410K gwei which would amount to roughly $0.77 USD (as
of April 2023). Compared to this, the cost of Pri-DVRF request
would be ∼ 450K gwei amounting to $0.84 USD. However as
Pri-DVRF enables re-usability without breaking predictability
(as explained in Section 1, for example by using PRGs), the
amortized cost turns out to be significantly cheaper – re-using
just twice is already cheaper than the non-private counter-
part, and re-using, say ten times would make the amortized
cost $0.084 USD, which becomes significantly cheaper.

9 CONCLUSION
Randomness is an indispensable resource in Web3 gaming.
With a growing demand for on-chain verifiable randomness,
new problems are arising. This work addresses one such prob-
lem and proposes a practical solution with formal analysis.
We expect more problems to arise in this space in the near fu-
ture with more innovation happening. Also, as the first work,

16

in this paper, we only formalize the core primitive, namely
output-private (distributed) VRF, and leave the formalization
of the entire smart-contract-based framework for future work.

REFERENCES
[1] [n. d.]. mcl - A portable and fast pairing-based cryptography library. .

https://github.com/herumi/mcl.
[2] [n. d.]. Pri-DVRF – Anonymous link. https://anonymous.4open.science/r/

PVRF_IMPL-1F04/README.md.
[3] Shashank Agrawal, Peihan Miao, Payman Mohassel, and Pratyay Mukher-

jee. 2018. PASTA: PASsword-based Threshold Authentication. InACMCCS
2018: 25th Conference on Computer and Communications Security, David
Lie, Mohammad Mannan, Michael Backes, and XiaoFeng Wang (Eds.).
ACM Press, Toronto, ON, Canada, 2042–2059. https://doi.org/10.1145/
3243734.3243839

[4] Shashank Agrawal, Payman Mohassel, Pratyay Mukherjee, and Peter
Rindal. 2018. DiSE: Distributed Symmetric-key Encryption. In ACM CCS
2018: 25th Conference on Computer and Communications Security, David
Lie, Mohammad Mannan, Michael Backes, and XiaoFeng Wang (Eds.).
ACM Press, Toronto, ON, Canada, 1993–2010. https://doi.org/10.1145/
3243734.3243774

[5] Anonymous. 2023. FlexiRand: Output Private (Distributed) VRFs and
Application to Blockchains. (2023). https://anonymous.4open.science/r/
PVRF_IMPL-B1F8/report/Pri-VRF.pdf.

[6] D. F. Aranha, C. P. L. Gouvêa, T. Markmann, R. S.Wahby, and K. Liao. [n. d.].
RELIC is an Efficient LIbrary for Cryptography. https://github.com/relic-
toolkit/relic.

[7] Renas Bacho and Julian Loss. 2022. On the Adaptive Security of the
Threshold BLS Signature Scheme. Cryptology ePrint Archive, Paper
2022/534. https://eprint.iacr.org/2022/534 https://eprint.iacr.org/2022/534.

[8] Nir Bitansky. 2020. Verifiable Random Functions from Non-interactive
Witness-Indistinguishable Proofs. Journal of Cryptology 33, 2 (April 2020),
459–493. https://doi.org/10.1007/s00145-019-09331-1

[9] Dan Boneh, Ben Lynn, and Hovav Shacham. 2001. Short Signatures from
the Weil Pairing. In Advances in Cryptology — ASIACRYPT 2001, Colin
Boyd (Ed.). Springer Berlin Heidelberg, Berlin, Heidelberg, 514–532.

[10] Dan Boneh, Ben Lynn, and Hovav Shacham. 2001. Short Signatures from
the Weil Pairing. In Advances in Cryptology – ASIACRYPT 2001 (Lecture
Notes in Computer Science, Vol. 2248), Colin Boyd (Ed.). Springer, Heidelberg,
Germany, Gold Coast, Australia, 514–532. https://doi.org/10.1007/3-540-
45682-1_30

[11] Ran Canetti. 2001. Universally Composable Security: A New Paradigm
for Cryptographic Protocols. In 42nd Annual Symposium on Foundations
of Computer Science. IEEE Computer Society Press, Las Vegas, NV, USA,
136–145. https://doi.org/10.1109/SFCS.2001.959888

[12] Ran Canetti. 2004. Universally Composable Signature, Certification, and
Authentication. In 17th IEEE Computer Security Foundations Workshop,
(CSFW-17 2004), 28-30 June 2004, Pacific Grove, CA, USA. IEEE Computer
Society, Los Alamitos, CA, USA, 219. https://doi.org/10.1109/CSFW.2004.
24

[13] Ran Canetti, Asaf Cohen, and Yehuda Lindell. 2015. A Simpler Variant of
Universally Composable Security for StandardMultiparty Computation. In
Advances in Cryptology – CRYPTO 2015, Part II (Lecture Notes in Computer
Science, Vol. 9216), Rosario Gennaro and Matthew J. B. Robshaw (Eds.).
Springer, Heidelberg, Germany, Santa Barbara, CA, USA, 3–22. https:
//doi.org/10.1007/978-3-662-48000-7_1

[14] Cardano. [n. d.]. Ouroboros Protocol. https://cardano-foundation.gitbook.
io/stake-pool-course/lessons/introduction/ouroboros.

[15] Chainlink. [n. d.]. Chainlink VRF: On-Chain Verifiable Random-
ness. https://developer.wax.io/en/tutorials/create-wax-rng-smart-
contract/rng_basics.html.

[16] Chainlink Lab. [n. d.]. Random Rewards in Blockchain Games. https:
//blog.chain.link/random-rewards-in-blockchain-games/.

[17] David Chaum and Torben P. Pedersen. 1993. Wallet Databases with Ob-
servers. InAdvances in Cryptology – CRYPTO’92 (Lecture Notes in Computer
Science, Vol. 740), Ernest F. Brickell (Ed.). Springer, Heidelberg, Germany,
Santa Barbara, CA, USA, 89–105. https://doi.org/10.1007/3-540-48071-4_7

[18] Cloudflare. [n. d.]. Decentralized Verifiable Randomness Beacon. https:
//developers.cloudflare.com/randomness-beacon/.

[19] Corestar. [n. d.]. Corestar Arcade: Tendermint-based Byzantine Fault
Tolerant (BFT) middleware with an embedded BLS-based random beacon.
https://github.com/corestario/tendermint.

[20] Sandro Coretti, Aggelos Kiayias, Cristopher Moore, and Alexander Russell.
2022. The Generals’ Scuttlebutt: Byzantine-Resilient Gossip Protocols. In

ACM CCS 2022: 29th Conference on Computer and Communications Security,
Heng Yin, Angelos Stavrou, Cas Cremers, and Elaine Shi (Eds.). ACM Press,
Los Angeles, CA, USA, 595–608. https://doi.org/10.1145/3548606.3560638

[21] DAOBet (ex — DAO.Casino). [n. d.]. To Deliver On-Chain Ran- dom
Beacon Based on BLS Cryptography. https://daobet.org/blog/on-chain-
random-generator/.

[22] DeFi Kingdom. [n. d.]. Official DeFi Kingdoms Whitepaper. https://docs.
defikingdoms.com/.

[23] Defi Kingdom. 2023. Unaffordability of existing VRF service framework.
Personal Communication.

[24] Yevgeniy Dodis. 2003. Efficient Construction of (Distributed) Verifiable
Random Functions. In PKC 2003: 6th International Workshop on Theory and
Practice in Public Key Cryptography (Lecture Notes in Computer Science,
Vol. 2567), Yvo Desmedt (Ed.). Springer, Heidelberg, Germany, Miami, FL,
USA, 1–17. https://doi.org/10.1007/3-540-36288-6_1

[25] Yevgeniy Dodis and Aleksandr Yampolskiy. 2005. A Verifiable Ran-
dom Function with Short Proofs and Keys. In PKC 2005: 8th Interna-
tional Workshop on Theory and Practice in Public Key Cryptography
(Lecture Notes in Computer Science, Vol. 3386), Serge Vaudenay (Ed.).
Springer, Heidelberg, Germany, Les Diablerets, Switzerland, 416–431.
https://doi.org/10.1007/978-3-540-30580-4_28

[26] Muhammed F. Esgin, Veronika Kuchta, Amin Sakzad, Ron Steinfeld, Zhen-
fei Zhang, Shifeng Sun, and Shumo Chu. 2021. Practical Post-quantum
Few-Time Verifiable Random Function with Applications to Algorand. In
Financial Cryptography and Data Security - 25th International Conference,
FC 2021, Virtual Event, March 1-5, 2021, Revised Selected Papers, Part II (Lec-
ture Notes in Computer Science, Vol. 12675), Nikita Borisov and Claudia Diaz
(Eds.). Springer, 560–578. https://doi.org/10.1007/978-3-662-64331-0_29

[27] Michael J. Freedman, Yuval Ishai, Benny Pinkas, and Omer Reingold. 2005.
Keyword Search and Oblivious Pseudorandom Functions. In Theory of
Cryptography, Joe Kilian (Ed.). Springer Berlin Heidelberg, Berlin, Heidel-
berg, 303–324.

[28] David Galindo. [n. d.]. Distributed Verifiable Random Functions: an
Enabler of Decentralized Random Beacons. https://github.com/fetchai/
research-dvrf.

[29] David Galindo, Jia Liu, Mihai Ordean, and Jin-Mann Wong. 2021. Fully
Distributed Verifiable Random Functions and their Application to Decen-
tralised Random Beacons. In IEEE European Symposium on Security and
Privacy, EuroS&P 2021, Vienna, Austria, September 6-10, 2021. IEEE, 88–102.
https://doi.org/10.1109/EuroSP51992.2021.00017

[30] Rosario Gennaro, Stanislaw Jarecki, Hugo Krawczyk, and Tal Rabin. 2003.
Secure Applications of Pedersen’s Distributed Key Generation Protocol.
In Topics in Cryptology – CT-RSA 2003 (Lecture Notes in Computer Science,
Vol. 2612), Marc Joye (Ed.). Springer, Heidelberg, Germany, San Francisco,
CA, USA, 373–390. https://doi.org/10.1007/3-540-36563-X_26

[31] Rosario Gennaro, Stanislaw Jarecki, Hugo Krawczyk, and Tal Rabin. 2007.
Secure Distributed Key Generation for Discrete-Log Based Cryptosystems.
Journal of Cryptology 20, 1 (Jan. 2007), 51–83. https://doi.org/10.1007/
s00145-006-0347-3

[32] Sharon Goldberg, Jan Vcelak, Dimitrios Papadopoulos, and Leonid Reyzin.
2018. Verifiable random functions (VRFs). (2018).

[33] Jens Groth. 2021. Non-interactive distributed key generation and key
resharing. Cryptology ePrint Archive, Paper 2021/339. https://eprint.iacr.
org/2021/339 https://eprint.iacr.org/2021/339.

[34] Timo Hanke, Mahnush Movahedi, and Dominic Williams. 2018. DFINITY
Technology Overview Series, Consensus System. CoRR abs/1805.04548
(2018). arXiv:1805.04548 http://arxiv.org/abs/1805.04548

[35] Dennis Hofheinz and Tibor Jager. 2016. Verifiable Random Functions
from Standard Assumptions. In TCC 2016-A: 13th Theory of Cryptography
Conference, Part I (Lecture Notes in Computer Science, Vol. 9562), Eyal
Kushilevitz and Tal Malkin (Eds.). Springer, Heidelberg, Germany, Tel
Aviv, Israel, 336–362. https://doi.org/10.1007/978-3-662-49096-9_14

[36] Stanislaw Jarecki, Aggelos Kiayias, Hugo Krawczyk, and Jiayu Xu. 2017.
TOPPSS: Cost-Minimal Password-Protected Secret Sharing Based on
Threshold OPRF. In ACNS 17: 15th International Conference on Applied
Cryptography and Network Security (Lecture Notes in Computer Science,
Vol. 10355), Dieter Gollmann, Atsuko Miyaji, and Hiroaki Kikuchi (Eds.).
Springer, Heidelberg, Germany, Kanazawa, Japan, 39–58. https://doi.org/
10.1007/978-3-319-61204-1_3

[37] Neal Koblitz and Alfred Menezes. 2008. Another look at non-standard
discrete log and Diffie-Hellman problems. J. Math. Cryptol. 2, 4 (2008),
311–326. https://doi.org/10.1515/JMC.2008.014

[38] Lisa Kohl. 2019. Hunting and Gathering - Verifiable Random Functions
from Standard Assumptions with Short Proofs. In PKC 2019: 22nd Inter-
national Conference on Theory and Practice of Public Key Cryptography,
Part II (Lecture Notes in Computer Science, Vol. 11443), Dongdai Lin and

17

https://github.com/herumi/mcl
https://anonymous.4open.science/r/PVRF_IMPL-1F04/README.md
https://anonymous.4open.science/r/PVRF_IMPL-1F04/README.md
https://doi.org/10.1145/3243734.3243839
https://doi.org/10.1145/3243734.3243839
https://doi.org/10.1145/3243734.3243774
https://doi.org/10.1145/3243734.3243774
https://anonymous.4open.science/r/PVRF_IMPL-B1F8/report/Pri-VRF.pdf
https://anonymous.4open.science/r/PVRF_IMPL-B1F8/report/Pri-VRF.pdf
https://github.com/relic-toolkit/relic
https://github.com/relic-toolkit/relic
https://eprint.iacr.org/2022/534
https://eprint.iacr.org/2022/534
https://doi.org/10.1007/s00145-019-09331-1
https://doi.org/10.1007/3-540-45682-1_30
https://doi.org/10.1007/3-540-45682-1_30
https://doi.org/10.1109/SFCS.2001.959888
https://doi.org/10.1109/CSFW.2004.24
https://doi.org/10.1109/CSFW.2004.24
https://doi.org/10.1007/978-3-662-48000-7_1
https://doi.org/10.1007/978-3-662-48000-7_1
https://cardano-foundation.gitbook.io/stake-pool-course/lessons/introduction/ouroboros
https://cardano-foundation.gitbook.io/stake-pool-course/lessons/introduction/ouroboros
 https://developer.wax.io/en/tutorials/create-wax-rng-smart-contract/rng_basics.html
 https://developer.wax.io/en/tutorials/create-wax-rng-smart-contract/rng_basics.html
https://blog.chain.link/random-rewards-in-blockchain-games/
https://blog.chain.link/random-rewards-in-blockchain-games/
https://doi.org/10.1007/3-540-48071-4_7
https://developers.cloudflare.com/randomness-beacon/
https://developers.cloudflare.com/randomness-beacon/
https://github.com/corestario/tendermint
https://doi.org/10.1145/3548606.3560638
 https://daobet.org/blog/ on-chain- random-generator/
 https://daobet.org/blog/ on-chain- random-generator/
https://docs.defikingdoms.com/
https://docs.defikingdoms.com/
https://doi.org/10.1007/3-540-36288-6_1
https://doi.org/10.1007/978-3-540-30580-4_28
https://doi.org/10.1007/978-3-662-64331-0_29
https://github.com/fetchai/research-dvrf
https://github.com/fetchai/research-dvrf
https://doi.org/10.1109/EuroSP51992.2021.00017
https://doi.org/10.1007/3-540-36563-X_26
https://doi.org/10.1007/s00145-006-0347-3
https://doi.org/10.1007/s00145-006-0347-3
https://eprint.iacr.org/2021/339
https://eprint.iacr.org/2021/339
https://eprint.iacr.org/2021/339
https://arxiv.org/abs/1805.04548
http://arxiv.org/abs/1805.04548
https://doi.org/10.1007/978-3-662-49096-9_14
https://doi.org/10.1007/978-3-319-61204-1_3
https://doi.org/10.1007/978-3-319-61204-1_3
https://doi.org/10.1515/JMC.2008.014

Kazue Sako (Eds.). Springer, Heidelberg, Germany, Beijing, China, 408–437.
https://doi.org/10.1007/978-3-030-17259-6_14

[39] Veronika Kuchta and Mark Manulis. 2013. Unique Aggregate Signatures
with Applications to Distributed Verifiable Random Functions. In CANS 13:
12th International Conference on Cryptology and Network Security (Lecture
Notes in Computer Science, Vol. 8257), Michel Abdalla, Cristina Nita-Rotaru,
and Ricardo Dahab (Eds.). Springer, Heidelberg, Germany, Paraty, Brazil,
251–270. https://doi.org/10.1007/978-3-319-02937-5_14

[40] Silvio Micali, Michael O. Rabin, and Salil P. Vadhan. 1999. Verifiable
Random Functions. In 40th Annual Symposium on Foundations of Computer
Science. IEEE Computer Society Press, New York, NY, USA, 120–130. https:
//doi.org/10.1109/SFFCS.1999.814584

[41] Moni Naor, Benny Pinkas, and Omer Reingold. 1999. Distributed Pseudo-
random Functions and KDCs. In Advances in Cryptology – EUROCRYPT’99
(Lecture Notes in Computer Science, Vol. 1592), Jacques Stern (Ed.). Springer,
Heidelberg, Germany, Prague, Czech Republic, 327–346. https://doi.org/
10.1007/3-540-48910-X_23

[42] David Niehues. 2021. Verifiable Random Functions with Optimal Tightness.
In Public-Key Cryptography - PKC 2021 - 24th IACR International Conference
on Practice and Theory of Public Key Cryptography, Virtual Event, May 10-
13, 2021, Proceedings, Part II (Lecture Notes in Computer Science, Vol. 12711),
Juan A. Garay (Ed.). Springer, 61–91. https://doi.org/10.1007/978-3-030-
75248-4_3

[43] Polkadot. [n. d.]. Polkadot Wiki – Randomness. https://wiki.polkadot.
network/docs/learn-randomness.

[44] Philipp Schindler, Aljosha Judmayer, Nicholas Stifter, and Edgar Weippl.
2019. ETHDKG: Distributed Key Generation with Ethereum Smart Con-
tracts. Cryptology ePrint Archive, Report 2019/985. https://eprint.iacr.
org/2019/985.

[45] Claus-Peter Schnorr. 1990. Efficient Identification and Signatures for Smart
Cards. In Advances in Cryptology – CRYPTO’89 (Lecture Notes in Computer
Science, Vol. 435), Gilles Brassard (Ed.). Springer, Heidelberg, Germany,
Santa Barbara, CA, USA, 239–252. https://doi.org/10.1007/0-387-34805-
0_22

[46] Adi Shamir. 1979. How to share a secret. Commun. ACM 22, 11 (1979),
612–613.

[47] Wax. [n. d.]. WAX RNG Basics. https://blog.chain.link/chainlink-vrf-on-
chain-verifiable-randomness/.

A SMART-CONTRACT BASED VRF
SERVICE FRAMEWORK

We depict the message flow in the VRF service framework
in Figure 1. To avail of the service any user first forwards
their own input to the smart contract along with the callback
function to be called with the VRF output; this is indicated
by step 1 in Figure 1. The smart contract may be running on
any blockchain service like Ethereum. When input from the
user is sent to the smart contract, after verifying the input for-
mat and checking that the same value has not been requested
previously, the smart contract combines it with additional in-
formation (detailed below) forming the VRF input INP. The
VRF service fetches the formatted request from the smart
contract. Each of the nodes of the service computes a partial
evaluation of the user input by running the Part.Eval𝑠𝑘𝑖 (INP)
and also generates the (zero-knowledge) proof of correctness
of the computation. At least 𝑡 + 1 partial evaluations are ag-
gregated (typically using aggregator nodes) by running the
Aggregate(·) algorithm after verifying the zero-knowledge
proofs. The final VRF output and an accompanying proof are
sent to the smart contract, which then verifies the correctness
of the VRF output. If that succeeds, it invokes the user-specified
callback function with the VRF value as the input. Below we
summarize the steps of Figure 1:

(1) The user forwards its own input to the smart contract.

(2) The smart contract combines user input with other
values and produces the VRF input INP.

(3) The VRF service nodes fetch the input, and verify the
legitimacy of INP (for example, by verifying the sig-
nature provided by the contract), and whether it was
previously used.
• Each node in the VRF committee computes the

partial evaluation on INPwith the zero-knowledge
proof of correct evaluation. They send them to
the aggregator nodes of the VRF service.

(4) When more than 𝑡 partial evaluations are obtained at
an aggregator node, they are aggregated to compute
the VRF output and accompanying proof of correct-
ness. The pair is then sent to the smart contract as a
response.

(5) The smart contract verifies the VRF output.
(6) If the verification succeeds, it invokes the user-specified

callback function.

Output-privateVRF. For the Pri-VRFcomputation, the frame-
work stays similar to the above non-private case. However, the
workflow changes slightly. In particular, initially, when the
user forwards its input to the smart contract, the smart con-
tract creates the VRF input INP and sends it back to the user,
who then blinds INP and sends a pair consisting of blinded
INP and an accompanying zero-knowledge proof of correct
blinding. The VRF service nodes fetch this zero-knowledge
proof and the blinded input. The rest of the workflow is similar
to before; the smart contract will run Pre-verification PreVer
instead of Verification Verify now. This is depicted in Figure 2.
The callback function should run the Unblind algorithm on
the blinded output inside it to obtain the VRF output. Here
we describe all the fields included in the VRF input INP. Con-
structing the VRF input, INP.. The VRF input is produced
by the smart contract. Each input INP is a concatenation of
the following values:

• User input – this is the user’s chosen input and may
be empty.

• Block-hash – this is included to ensure that no one can
request the input before the block-hash is computed.
This prevents one from pre-computing a VRF output
to be used at a later time.

• Unique nonce –a unique nonce generated at the spe-
cific smart contract each time a VRF is called. This
ensures that each VRF input is different. For this, the
smart contractmust keep a state (for example, a counter).

• Chain id – this distinguishes inputs generated at two
different blockchains (for example, Ethereum and Solana).

• User address – this is user-specific information to dis-
tinguish between requests from different users.

• Callback function name – this is included to distin-
guish between two different functions coming from
the same user at about the same time.

• VRF or Pri-VRF– this is a flag distinguishing between a
Pri-VRFand VRF. Without this, a PVRF request may be

18

https://doi.org/10.1007/978-3-030-17259-6_14
https://doi.org/10.1007/978-3-319-02937-5_14
https://doi.org/10.1109/SFFCS.1999.814584
https://doi.org/10.1109/SFFCS.1999.814584
https://doi.org/10.1007/3-540-48910-X_23
https://doi.org/10.1007/3-540-48910-X_23
https://doi.org/10.1007/978-3-030-75248-4_3
https://doi.org/10.1007/978-3-030-75248-4_3
https://wiki.polkadot.network/docs/learn-randomness
https://wiki.polkadot.network/docs/learn-randomness
https://eprint.iacr.org/2019/985
https://eprint.iacr.org/2019/985
https://doi.org/10.1007/0-387-34805-0_22
https://doi.org/10.1007/0-387-34805-0_22
 https://blog.chain.link/chainlink-vrf-on-chain-verifiable-randomness/
 https://blog.chain.link/chainlink-vrf-on-chain-verifiable-randomness/

maliciously processed as a DVRF, leading to exposure
of the output.

A.1 GLOW-DVRF Framework [28, 29]
The Distributed Verifiable Random Functions implementa-
tion [28], which we call GLOW-framework, realizes the three
DVRFs, Dfinity-DVRF, the DDH-DVRF, and the GLOW-DVRF
[29]. The framework is written in C++ and provides imple-
mentations of the pairing-based GLOW-DVRF and Dfinity-
DVRF protocols with curves BN256, BN384, and BLS12-381,
and DDH-DVRF with curve Ristretto255. The pairing-based
protocols are implemented using mcl [1] and RELIC [6] crypto-
graphic libraries and the DDH-DVRF protocol with Libsodium.
The code compares the performance of the DVRFs for three
curves, BN256, BN384 and BL12-381. It realizes distributed key
generation protocol of Gennaro et al.[31] along the consensus
layer for reliable broadcast.

B MISSING PROOFS
In this section we present the proofs that are missing from the
main body.

B.1 Proof of Theorem 1
We consider a simpler case consisting of three parties, who are
performing specific tasks: a client 𝑃𝐶 who’s sending/receiving
inputs, a server 𝑃𝑆 who’s holding VRF keys and is performing
the evaluations and an eavesdropper 𝑃𝐸 who has no input, and
is just observing the communications (we assume authenti-
cated but no secure channels). All three parties may perform
the public operations such as verifications based on the pub-
licly available values. We build three distinct simulators S𝐸 ,
S𝑆 and S𝐶 for three distinct cases

• Case-1: S𝐸 : a corrupt 𝑃𝐸 , when 𝑃𝐶 and 𝑃𝑆 are honest.
• Case-2: S𝐶 : a corrupt 𝑃𝐶 , when 𝑃𝐸 and 𝑃𝑆 are honest.
• Case-3: S𝑆 : a corrupt 𝑃𝑆 , when 𝑃𝐸 and 𝑃𝐶 are honest.

We argue that this is without loss of generality because, in a
multiplayer scenario, any corruption can be simulated by a
combination of these when a party can in fact act as any of
the three roles or a combination of them. Nevertheless, for
a particular execution, defined by (𝑣𝑘, 𝑥), a party can have
exactly one of the three roles – the input provider, who pro-
vides 𝑥 , is a client, the VRF-evaluator, who owns the key 𝑣𝑘 ,
is a server and everyone else is an eavesdropper. Therefore,
for any scenario, the generic simulation strategy would be to
identify the role of each corrupt party corresponding to an
execution and then use the corresponding simulation strategy
from above as a sub-routine. Therefore, it is sufficient to de-
scribe each simulator and argue why the simulations work,
which we present next.
Case-1. 𝑃𝐸 corrupt. In this case, we need to ensure that no
eavesdropper can learn the VRF output until it is revealed,
even if it can access the input 𝑥 , the verification-key 𝑣𝑘 plus
the entire transcript. Essentially this case specifically captures
the output-privacy property we formalize in this paper. For

any standard VRF scheme without output-privacy, this step
can not be simulated.

The main idea here is that S𝐸 simulates honest client 𝑃𝐶
and honest server 𝑃𝑆 just as honest parties and also simulates
all random oracle (RO) queries. For the server, it runs Keygen
to generate (𝑠𝑘, 𝑣𝑘) and then registers 𝑣𝑘 ∈ 𝐾𝑒𝑦𝑠 [𝑃𝑆]. When it
receives the message (Input, 𝑣𝑘, 𝑥) from the ideal functional-
ity, it generates uniform random 𝜌 and correctly computes the
blinded input 𝑥 . It is then given to the adversary (corrupt 𝑃𝐸).
From the server side, the simulator computes 𝑦 correctly and
knows 𝑠𝑘 . So the corrupt eavesdropper obtains the following
values before unblinding:

• public key 𝑣𝑘 = (𝑣𝑘1 = 𝑔𝑠𝑘1 , 𝑣𝑘2 = 𝑔𝑠𝑘2);
• input 𝑥 , and subsequently H1 (𝑥) through RO query;
• blinded input𝜓 = H1 (𝑥)𝜌 and the NIZK proof `;
• blinded output 𝑦 = H1 (𝑥)𝜌𝑠𝑘 .

After the unblinding phase 𝑃𝐸 additionally gets 𝑦 = H2 (𝜋)
and 𝜋 = H1 (𝑥)𝑠𝑘 . The simulator only gets a uniform random
𝑦 after making an explicit unblinding query on 𝛽 = 𝑦, namely
(Unblind, 𝑥, 𝛽) to the ideal functionality. So it needs to pro-
gram 𝑦 as H2 (𝜋). This is easily done as long as the adversary
makes a random oracle query after the unblinding phase. How-
ever, if the simulator receives a random oracle query onH2 (𝜋)
before the unblinding phase, then it fails. This is because the
only way for the simulator to obtain (𝑦, 𝜋) is through an ex-
plicit Unblind query. In particular, since both 𝑃𝐶 and 𝑃𝑆 are
honest, the simulator does not get the output during Eval or
by any other means. So, before the unblind phase, there was
no (Reveal, 𝑣𝑘, 𝑥) query from the honest client, and hence at
this point the pair (𝑣𝑘, 𝑥) is not marked Revealed, and con-
sequently, the simulator can not obtain 𝑦. So, for a successful
simulation, we need to prove that the probability that the
eavesdropper can predict the value 𝜋 = H1 (𝑥)𝑠𝑘 (and subse-
quently make a RO query with that) must be negligible. We
argue that, unless it is so, we can construct a PPT algorithm
to break the co-CDH assumption over bilinear groups with
non-negligible probability. The reduction works as follows:

Given a co-CDH instance:

𝑔1, 𝑔
𝑠𝑘
1 , ℎ1 ∈ G1; 𝑔2, 𝑔

𝑠𝑘
2 ∈ G2

for uniform random generators 𝑔1, ℎ1, 𝑔2 and a uniform ran-
dom field element 𝑠𝑘 ∈ Z𝑝 . The reduction’s goal is to compute
ℎ𝑠𝑘1 . For that, the reduction simulates as follows:

• Let 𝑠𝑘 be the secret-key of the scheme (implicitly),
then 𝑣𝑘1 = 𝑔𝑠𝑘1 and 𝑣𝑘2 = 𝑔𝑠𝑘2 and 𝑣𝑘 := (𝑣𝑘1, 𝑣𝑘2) is
the verification key. Note that the reduction can not
mimic the simulator as it does not know 𝑠𝑘 .

• Program the RO query H1 (𝑥) := ℎ1. However, for
𝑞 = poly(^) many queries, this 𝑥 must be guessed by
the reduction, which is correct with probability 1/𝑞,
incurring a loss by the same factor.

• Choose uniform random 𝑟 ←$ Z𝑝 , and compute 𝑔1 =

𝑔𝑟1 and 𝑔𝑠𝑘1 := 𝑔𝑟𝑠𝑘1 . Then implicitly define𝜓 := 𝑔1 and
𝑦 := 𝑔𝑠𝑘1 .

19

• Finally NIZK proof ` is simulated using the simulator
KepSimu on the instance (ℎ1,𝜓 = 𝑔1) .

We argue that the above simulation is correct. Most part of this
is straightforward to see. However, the simulation of𝜓 is done
in a manner such that the blind state 𝜌 for which𝜓 = H1 (𝑥)𝜌
remains unknown, though H1 (𝑥) is known. This is possible
because the client is honest and therefore 𝜌 must come from a
uniform random distribution. By setting 𝑔 = 𝑔𝑟1 = H1 (𝑥)𝜌 , the
simulator is implicitly setting 𝑟 = 𝜌𝜔 where ℎ1 = 𝑔𝜔1 knowing
neither 𝜔 (which is basically DLOGℎ1 (𝑔1)) nor 𝜌 , but only 𝑟 ,
which is again distributed uniformly at random. Now, clearly
if the adversary makes a RO query H2 (𝜋) where 𝜋 = ℎ𝑠𝑘1 ,
the reduction checks whether 𝑒 (ℎ1, 𝑣𝑘2) = 𝑒 (𝜋,𝑔2), and if it
satisfies the reduction output 𝜋 as the answer to the Co-CDH
challenger.

So, we have that:

Pr[E1] ≥
1
𝑞
· Pr[E2]

where the probabilities are over the randomnesses of the reduc-
tion and the adversary and the events E1 and E2 are defined
as:

• E1 : The reduction breaks Co-CDH.
• E2 : The adversary (corrupt 𝑃𝐸) makes a RO query

H2 (ℎ𝑠𝑘1).
and the loss 𝑞 was introduced due to guessing in programming
the correct challenge. This concludes the proof of this case,
because 𝑞 = poly(^).
Case-2: 𝑃𝐶 corrupt.. In this case, the simulator simulates the
honest server to corrupt client. There are two main objectives
of the corrupt client: (i) to produce a malformed pair (𝜓, `); (ii)
to distinguish 𝑦 from a uniform random string. The first attack
is prevented easily by the soundness of NIZK used. Handling
the second scenario is more involved. Nevertheless, it can
be proven using techniques similar to Jarecki et al. [36] and
Agrawal et al. [3] who provide proofs of pseudorandomness
of a very similar OPRF construction. In particular, we need to
prove that if a corrupt client makes 𝑞 = poly(^) many com-
plete evaluation queries to the server, it is unable to produce
more than 𝑞 “valid” triples (𝑥1, 𝑦1, 𝜋1), . . . , (𝑥𝑞, 𝑦𝑞, 𝑦𝑞). We will
argue, unless this is true, there is a PPT reduction which would
break the Bilinear One-more DH (BOMDH) problem in the
underlying pairing-supported groups.

The simulator simulates the honest server by sampling
a key pair (𝑠𝑘, 𝑣𝑘) using Keygen and registering 𝑣𝑘 for 𝑃𝑆
as 𝑣𝑘 ∈ 𝐾𝑒𝑦𝑠 [𝑃𝑆]. In this case, the adversary sends client’s
message (𝑥,𝜓, `). The simulator sends back 𝑦 = 𝑥𝑠𝑘 and set
𝛽 := 𝑦. Now, due to the soundness of the zero-knowledge proof,
the adversary is bound to send 𝜓 = (𝑥,H1 (𝑥)𝜌) with over-
whelming probability. So, in the end it obtains 𝜋 = H1 (𝑥)𝑠𝑘
from the server interaction and then subsequently H2 (𝜋). The
hash functions H1 and H2 are simulated as random oracles
on-the-fly in a straightforward manner. This is repeated for
𝑞 = 𝑂 (poly(^)) many times, after which the adversary ob-
tains 𝑞 triples 𝑋 = {(𝑥𝑖 , 𝑦𝑖 , 𝜋𝑖)}𝑖∈[𝑞] . We want to bound the

following probability by the probability of breaking BOMDH.

Pr[E1 |E2]

where the events are defined as:
• E1: Verify(𝑣𝑘, (𝑥∗, 𝑦∗, 𝜋∗)) = 1 ∧ (𝑥∗, 𝑦∗, 𝜋∗) ∉ 𝑋
• E2: 𝑃𝐶 outputs (𝑥∗, 𝑦∗, 𝜋∗)

The reduction to BOMDH works as follows: Given an Bilinear
OMDH instance

𝑔1, 𝑔
𝑠𝑘
1 , 𝑔1, 𝑔2, . . . , 𝑔𝑘 ∈ G1; 𝑔2, 𝑔

𝑠𝑘
2 ∈ G2

for uniform generators 𝑔1, {𝑔𝑖 }𝑖∈[𝑞] , 𝑔2 and uniform random
field element 𝑠𝑘 ∈ Z𝑝 , and an exponentiation oracle, which on
input any element 𝑔 ∈ G1 returns 𝑔𝑠𝑘 (let us call this 𝑠𝑘-exp
oracle), the reduction’s goal is to compute 𝑞 + 1 pairs

(𝑔1, 𝑔
𝑠𝑘
1), . . . , (𝑔𝑞+1, 𝑔

𝑠𝑘
𝑞+1)

by making at most 𝑞 (𝑘 ≥ 𝑞 + 1) queries to the 𝑠𝑘-exp oracle
such that for all 𝑖 ∈ [𝑞 + 1], 𝑔𝑖 ∈ {𝑔1, . . . , 𝑔𝑚}.

Towards that the reduction simulates our setting to the
adversary (corrupt 𝑃𝐶) as follows:

(1) Let the secret-key be (implicitly) 𝑠𝑘 , and then the veri-
fication key becomes 𝑣𝑘 := (𝑣𝑘1, 𝑣𝑘2) where 𝑣𝑘1 = 𝑔𝑠𝑘1
and 𝑣𝑘2 = 𝑔𝑠𝑘2 .

(2) Each RO query H(𝑥𝑖) is responded with 𝑔𝑖 . Store such
𝑥𝑖 into a list 𝐿.

(3) When the client sends (𝑥𝑖 ,𝜓𝑖 , `𝑖), then first verify the
proof using KExpVer, and if it succeeds then use the
𝑠𝑘-exp oracle to obtain 𝑦𝑖 := 𝜓𝑠𝑘

𝑖
and return that to

the adversary. Keep a counter cnt to keep track of the
number of distinct access to 𝑠𝑘-exp oracle.

(4) Each RO query H2 (𝛼) is responded with Rand(𝛼). For
each such query, check if there exists any 𝑥𝑖 ∈ 𝐿 such
that 𝑒 (H1 (𝑥𝑖), 𝑣𝑘2) = 𝑒 (𝛼,𝑔2). If yes, then store the
triple (𝑥𝑖 , 𝑦𝑖 , 𝜋𝑖) to a list 𝐹 , where 𝑦𝑖 := Rand(𝛼) and
𝜋𝑖 := 𝛼 . At any time |𝐹 | > cnt, output 𝐹 as the answer
to the BOMDH challenger.

We argue that the above simulation is correct despite the fact
that the reduction, unlike the simulator, does not have access to
the secret-key 𝑠𝑘 . However, this was resolved using the 𝑠𝑘-exp
oracle. The random oracles are simulated perfectly too by plug-
ging in the values from the challenge. Now, since the counter
cnt is incremented only when a evaluation query is completed,
whenever the adversary is able to produce one more valid
triple, |𝐹 | > |cnt| and the reduction wins the BOMDH game.

So, we can claim that:

Pr[E] ≥ Pr[E1 | E2]
whereE defines the eventwhen the reductionwins the BOMDH
game. This concludes the proof of this case.
Case-3. 𝑃𝑆 corrupt. When the server is corrupt, the “unpre-
dictability aspect” of the construction is off the table. However,
even in that case, the public verifiability guarantees that the
server can not produce an output that is incorrect, for example,

20

biased towards a specific value. In other words, though unpre-
dictability can not be guaranteed, the so-called “unbiasability”
would continue to hold.

The simulator, in this case, receives the verification key
𝑣𝑘 from the adversarial server 𝑃𝑆 and registers it with the
ideal functionality within𝐾𝑒𝑦𝑠 [𝑃𝑆] while controlling the ideal
server 𝑃𝑆 . Then it simulates the honest client to the corrupt
server as follows:

(1) The simulator maintains two lists 𝐼 and 𝐿, where 𝐼
contains pairs (𝑥,𝜓), that is the information with re-
spect to the input and corresponding client’s message
(generated by the simulator); and 𝐿 contains tuples
(𝑥, 𝜋, 𝛽,𝑦), that is information from the entire evalua-
tion, including server’s message and the output with
respect to an input.

(2) On receiving (Input, 𝑣𝑘, 𝑥) sample a uniform random
𝜌 ←$ Z𝑝 and then construct (𝑥, 𝑥) just like an honest
party, where 𝑥 = (𝜓 := H1 (𝑥)𝜌 , `). Append (𝑥,𝜓) to a
list 𝐼 .

(3) On receiving a message 𝑦 from the server:
(a) If there is an (𝑥,𝜓) ∈ 𝐼 such that 𝑒 (𝑦,𝑔2) =

𝑒 (𝜓, 𝑣𝑘2):
(i) If (𝑥, ∗, ∗, ∗) ∉ 𝐿: then issue an evaluation

query (Eval, 𝑥, 𝑣𝑘) to the ideal function-
ality, and when the ideal functionality re-
turns the same query, reply with (𝜋 :=
𝑦1/𝜌 , 𝛽 := 𝑦). Finally, on receiving an out-
put𝑦 from the ideal functionality store (𝑥, 𝜋,
𝛽,𝑦) into 𝐿.

(ii) If there is (𝑥, 𝜋, 𝛽,𝑦) ∈ 𝐿: reply the evalua-
tion query with (𝜋, 𝛽).

(b) Otherwise, on receiving the evaluation query from
the ideal functionality, reply with ⊥.

(4) On receiving an RO query H2 (𝜋):
(a) If there is an (𝑥,𝜓) ∈ 𝐼 , such that 𝑒 = (𝜋,𝑔2) =

𝑒 (H1 (𝑥), 𝑣𝑘2) but (𝑥, ∗, ∗, ∗) ∉ 𝐿 : then make a
(Eval, 𝑣𝑘, 𝑥) query to the ideal functionality and
respond with (𝜋, 𝛽 := 𝜋𝜌). On the completion
of the evaluation query, receive 𝑦 from the ideal
functionality which it programs as an answer
H2 (𝜋) := 𝑦. Append (𝑥, 𝜋, 𝛽,𝑦) into 𝐿.

(b) If there exists a tuple (𝑥, 𝜋, 𝛽,𝑦) ∈ 𝐿, then answer
with H2 (𝜋) := 𝑦.

(c) Otherwise just respond with Rand(𝜋).

Other queries are straightforward to handle in this case. We
argue that the above simulation is correct with overwhelm-
ing probability. In particular, unless the adversarial server can
guess H1 (𝑥)𝑠𝑘 before observing 𝑥 , the simulation would be
perfect. Note that, once the server obtains 𝑥 , a pair (𝑥,𝜓) gets
listed in 𝐼 . And then there are two cases: (i) The adversary
makes a RO query H2 (𝜋), with a valid 𝜋 for which the veri-
fication equation holds, before it returns 𝑦: in this case, the
simulator first executes Step 4a. Later when it receives 𝑦, it
executes Step 3(a)ii. Clearly, in this case, the simulator is able

to consistently program the random oracle and then subse-
quently finish the evaluation using ideal functionality. (ii) In
the other case, the adversary first sends 𝑦 and later makes a
RO query H2 (𝜋): the simulator now first executes Step 3(a)i,
and later Step 4c. In this case, since the pre-verification must
satisfy, the simulation would be perfect. Of course, in case the
pre-verification does not satisfy, the simulator would not allow
to complete the evaluation, which it ensures by sending ⊥ to
the ideal functionality. However, if the adversary can correctly
predict the output of H1 (𝑥) without explicitly making RO
query H1 (𝑥), the simulation would fail, as it could not have 𝑦
without making an evaluation query to the ideal functionality
– this clearly happens only with negligible probability. This
concludes the proof.

B.2 Proof of Theorem 3
Similar to the proof of the non-threshold case (Theorem 1) we
consider a simpler setting consisting of a single client 𝑃𝐶 who
has inputs, 𝑛 servers S = {𝑃1, . . . , 𝑃𝑛} each of whom holds a
partial VRF secret-key (that is, 𝑃𝑖 holds 𝑠𝑘𝑖) after a successful
DKG execution and they perform the evaluations jointly, an
aggregator 𝑃𝐴 who observes all communications and performs
any verification just like the eavesdropper in the proof of The-
orem 1, but additionally aggregates the partial responses, and
sends the aggregated value to the client, and an eavesdrop-
per 𝑃𝐸 . Note that, neither the eavesdropper’s functionality is
a subset of the aggregator’s functionality and hence we can
often consider them as a single entity. We again note that
for each execution corresponding to a specific (𝑣𝑘, 𝑥) a party
plays exactly one role, although across different executions
that can change. Again we argue that considering this specific
setting is without loss of generality. To see that fix a specific
(𝑣𝑘, 𝑥). Then, the overall objectives of different entities can be
described as follows for the above setting:

• The honest 𝑃𝐶 and an uncorrupted set S (that has no
more than 𝑡 corrupt servers) intend to compute a VRF
𝑦 = 𝑉𝑠𝑘 (𝑥) correctly and securely, so that no one else
can recover/predict 𝑦, given the entire transcripts that
include 𝑥 , without querying explicitly on 𝑥 (which is
prevented as (𝑣𝑘, 𝑥) is unique to each party.

• If the client is corrupt, and colludes with up to 𝑡 ma-
licious servers in S then she tries to break the pseu-
dorandomness of 𝑦. In this case, the protocol should
guarantee that unless the client derives 𝑦 explicitly by
interacting with honest servers, the value 𝑦 remains
pseudorandom.

• If only the client is honest, and everyone else in the
system is corrupt, then the client’s objective would be
to ensure that, the value 𝑦 is, nevertheless, computed
correctly by the server (and forwarded by the aggrega-
tor), where the adversarial server would try to produce
an incorrect (and potentially biased) value𝑦′ ≠ 𝑉𝑠𝑘 (𝑥)
such that it appears legitimate to the client. Obviously,
the unpredictability of 𝑦 is impossible to guarantee in
this case.

21

It is not hard to see that this exhausts the objectives of all
parties in the system. In a more complex system, for each
execution (defined by (𝑣𝑘, 𝑥)), the strategy would be to as-
sign roles to each party, and then deal with them separately
by different simulation strategies corresponding to each case
respectively as described below:

• Case-1: S𝐸 : 𝑃𝐴 , 𝑃𝐸 and a set C ⊂ S of servers are
corrupt such that |C| ≤ 𝑡 (recall, 𝑡 is the threshold of
the system). The client and other servers in H = S \ C
are honest.

• Case-2:S𝐶 : 𝑃𝐶 and the set C ⊂ S of servers are corrupt
such that |C| ≤ 𝑡 . The aggregator (and the eavesdrop-
per) and rest of the servers in H are honest.

• Case-3: S𝑆 : |C| ≥ 𝑡 + 1 and the aggregator 𝑃𝐴 (plus
𝑃𝐸) are corrupt. The client 𝑃𝐶 and the servers in H
(|H| < 𝑡) honest.

Case-1: Corrupt 𝑃𝐸 , 𝑃𝐴 and severs in C with |C| ≤ 𝑡 . We re-
mark that this case is analogous to Case-1 in the non-threshold
setting (Theorem 1), because since less than 𝑡 servers are cor-
rupted, the secret-key 𝑠𝑘 is hidden information theoretically
and hence the adversary should not see the output before
the Reveal phase even if it is provided with (𝑣𝑘, 𝑥) and the
entire transcripts – this case specifically captures the “output-
privacy” property introduced in this work.

The simulation strategy can be extended straightforwardly
from the centralized PVRF analysis, except for the following
two things:

• In contrast to the centralized case, here the blinded
output is sent by a potentially corrupt aggregator.
However, this is rather easy to simulate due to the
pre-verification check. In particular, once the simu-
lator receives an aggregated value from the corrupt
aggregator, it uses pre-verification to determine the
correctness of that, and if the check fails, return ⊥ to
the request (Aggregate, 𝑣𝑘, 𝑥, . . .).

• Since there are 𝑓 ≤ 𝑡 corrupt servers, the simulator
needs to provide them the key shares {𝑠𝑘𝑖 }𝑖∈[𝑓] (for
simplicity denote the corrupt servers by 𝑃1, . . . , 𝑃𝑓).
The simulator does this by computing each share us-
ing Shamir’s secret sharing. Furthermore, the corrupt
server’s response can be checked using partial pre-
verification.

The adversary obtains the following values in total before
the Reveal phase:

• public key 𝑣𝑘 = (𝑝𝑘 = 𝑔𝑠𝑘2 , {𝑝𝑘𝑖 = 𝑔
𝑠𝑘𝑖
1 }𝑓 <𝑖≤𝑛);

• corrupt secret-keys {𝑠𝑘𝑖 }𝑖∈[𝑓]
• input 𝑥 , and subsequently H1 (𝑥) through RO query;
• blinded input 𝜓 = H1 (𝑥)𝜌 and the NIZK proof of

knowledge of exponent `;
• blinded partial outputs 𝑦𝑖 = (𝑤𝑖 = 𝜓𝑠𝑘𝑖 , 𝜋𝑖) for 𝑖 ∈
{𝑓 + 1, . . . , 𝑛}, where 𝜋𝑖 is a NIZK proof of equal expo-
nent with respect to 𝑣𝑘𝑖 .

• blinded output 𝑦 = H1 (𝑥)𝜌𝑠𝑘 .

Again, we need to ensure that the probability that the adver-
sary can ask an RO query to H2 (·) on 𝜋 = H1 (𝑠𝑘) is negligible.
We reduce this again to Co-CDH akin to the centralized case.
Given a Co-CDH instance:

𝑔1, 𝑔
𝑠𝑘
1 , ℎ1 ∈ G1; 𝑔2, 𝑔

𝑠𝑘
2 ∈ G2

for uniform random generators 𝑔1, ℎ1, 𝑔2 and a uniform ran-
dom field element 𝑠𝑘 ∈ Z𝑝 . The reduction’s goal is to compute
ℎ𝑠𝑘1 . For that, the reduction simulates as follows:

• Let 𝑠𝑘 be the secret-key of the scheme (implicitly),
then 𝑝𝑘 = 𝑔𝑠𝑘2 . Let the corrupt set be {𝑃1, . . . , 𝑃𝑓 }.
Then choose 𝑡 random 𝑠𝑘𝑖 ←$ Z𝑝 and set for each
𝑖 ∈ [𝑡]: 𝑣𝑘𝑖 := 𝑔

𝑠𝑘𝑖
1 . For ∈ {𝑡 + 1, . . . , 𝑛} use the

Lagrange interpolation in the exponent to construct
𝑣𝑘𝑖 := 𝑔𝑠𝑘𝑖1 where implicitly using 𝑠𝑘 at point 0 and
for each 𝑖 ∈ [𝑡]: 𝑠𝑘𝑖 as the 𝑖-th polynomial output. Set
𝑣𝑘 := (𝑝𝑘, {𝑣𝑘𝑖 }𝑖∈[𝑛]) as the verification key.

• Program the RO query H1 (𝑥) := ℎ1.
• Choose uniform random 𝑟 ←$ Z𝑝 , and compute 𝑔1 =

𝑔𝑟1 and 𝑔𝑠𝑘1 := 𝑔𝑟𝑠𝑘1 . Define 𝜓 := 𝑔. Then for 𝑖 ∈ [𝑛]
define for each 𝑖 ∈ [𝑛]𝑤𝑖 := 𝑔𝑠𝑘𝑖1 . The associated NIZK
proof 𝜋𝑖 is simulated using EqSimu if 𝑠𝑘𝑖 is unknown,
otherwise, it is computed correctly.

• Finally NIZK proof ` is simulated using the simulator
KepSimu on the instance (ℎ1,𝜓 = 𝑔1) .

Similar to the centralized case, we can argue that the above
simulation is correct. Note that, since no partial evaluation
H1 (𝑥)𝑠𝑘𝑖 is given to the adversary, the issue (which comes up
in [4, 29]) in simulating the honest partial evaluations on the
challenge input does not arise. The rest of the proof for this
case mimics that of the centralized case.
Case-2: Corrupt client 𝑃𝐶 plus servers in C with |C| ≤ 𝑡 .
This case is again analogous to the Case-2 in the non-threshold
setting (Theorem 1), as ≤ 𝑡 corrupt servers essentially implies
the secret-key is unknown to the adversary. Therefore, al-
though the output is revealed immediately through an explicit
query (no output privacy is guaranteed), the pseudorandom-
ness of the output should still hold. In particular, we need to
argue that, unless the client explicitly queries on 𝑥 , it does not
know 𝑦 = 𝑉𝑠𝑘 (𝑥). The simulation strategy, in this case, can be
adapted from the centralized case.

In this case, the simulator simulates the honest server to cor-
rupt client and corrupt servers in C. Again, there are two main
objectives of the adversary: (i) to produce a malformed pair
(𝜓, `); (ii) to distinguish𝑦 from a uniform random string, while
controlling up to 𝑡 servers. The first attack is prevented easily
by the soundness of NIZK used. To handle the second attack,
we use techniques similar to Jarecki et al. [36] and Agrawal et
al. [3] provide proofs of pseudorandomness of a very similar
Distributed OPRF construction. In fact, we use a proof tech-
nique similar to the centralized case, but now in the threshold
setting. In particular, we need to prove that if a corrupt client
makes 𝑞 = poly(^) many complete (here it means for each 𝑥𝑖
it completes at least 𝑡 + 1− 𝑓 honest partial evaluation queries,

22

and the aggregation query subsequently) evaluation queries to
the honest servers, it is unable to produce more than 𝑞 “valid”
triples (𝑥1, 𝑦1, 𝜋1), . . . , (𝑥𝑞, 𝑦𝑞, 𝑦𝑞). We will argue unless this is
true, there is a PPT reduction that would break the Threshold
Bilinear One-more DH (T-BOMDH) problem in the underlying
pairing-based groups.

So, following the footsteps of the proof of Theorem 1, we
want to bound the following probability by the probability of
breaking BOMDH.

Pr[E1 |E2]
where the events are defined as:

• E1: Verify(𝑣𝑘, (𝑥∗, 𝑦∗, 𝜋∗)) = 1 ∧ (𝑥∗, 𝑦∗, 𝜋∗) ∉ 𝑋

where 𝑋 lists all 𝑞 triples that are generated after mak-
ing 𝑞 “complete evaluation” queries.

• E2: 𝑃𝐶 outputs a new triple (𝑥∗, 𝑦∗, 𝜋∗)
The reduction to BOMDHworks as follows: Given a T-BOMDH
instance

𝑔1, 𝑔
𝑠𝑘
1 , 𝑔1, 𝑔2, . . . , 𝑔𝑘 ∈ G1; 𝑔2, 𝑔

𝑠𝑘
2 ∈ G2

for uniform generators 𝑔1, {𝑔𝑖 }𝑖∈[𝑞] , 𝑔2 and uniform random
field element 𝑠𝑘 ∈ Z𝑝 , and an oracle that, on query (𝑗, 𝑔) for
any element 𝑔 ∈ G1 and any index 𝑗 ∈ [𝑛] returns 𝑔𝐷 (𝑗)
where 𝐷 is a 𝑡-degree polynomial such that 𝐷 (0) = 𝑠𝑘 , when
any 𝑓 ≤ 𝑡 points are fixed by the adversary (let us call this
𝐷-poly-exp oracle). In this case, since |C| = {𝑃1, . . . , 𝑃𝑓 }, the
reduction chooses 𝑓 uniform random 𝑠𝑘 𝑗 and set 𝐷 (𝑗) := 𝑠𝑘 𝑗 .
The reduction’s goal is to compute 𝑞 + 1 pairs

(𝑔1, 𝑔
𝑠𝑘
1), . . . , (𝑔𝑞+1, 𝑔

𝑠𝑘
𝑞+1)

by making at most 𝑞 (𝑘 ≥ 𝑞 + 1) “complete queries” to the 𝐷-
poly-exp oracle such that for all 𝑖 ∈ [𝑞 + 1], 𝑔𝑖 ∈ {𝑔1, . . . , 𝑔𝑚}
and each complete query means at least querying for ≥ 𝑡 ′ :=
𝑡 + 1 − 𝑓 distinct 𝑗 . Towards that the reduction simulates our
setting to the adversary as follows:

(1) Let 𝑠𝑘 be the secret-key of the scheme (implicitly),
then 𝑝𝑘 = 𝑔𝑠𝑘2 . For the corrupt set C = {𝑃1, . . . , 𝑃𝑓 }
choose 𝑓 random 𝑠𝑘 𝑗 ←$ Z𝑝 and set for each 𝑗 ∈ [𝑓]:
𝑣𝑘 𝑗 := 𝑔

𝑠𝑘 𝑗

1 . For 𝑗 ∈ {𝑓 + 1, . . . , 𝑡} use the 𝐷-poly-
exp oracle to get 𝑣𝑘 𝑗 := 𝑔𝐷 (𝑗)1 where implicitly using
𝐷 (0) = 𝑠𝑘 and for each 𝑗 ∈ [𝑓]: 𝐷 (𝑗) = 𝑠𝑘 𝑗 . Note
that for 𝑔1 the oracle was queries only 𝑡 ′ − 1 times,
it will not be counted towards the budget. Set 𝑣𝑘 :=
(𝑝𝑘, {𝑣𝑘 𝑗 } 𝑗∈[𝑛]) as the verification key.

(2) Each RO query H(𝑥𝑖) is responded with 𝑔𝑖 . Store such
𝑥𝑖 into a list 𝐿.

(3) When the corrupt client sends (𝑥𝑖 ,𝜓𝑖 , `𝑖 , 𝑃 𝑗), then first
verify the proof using KExpVer, and if it succeeds then
use the 𝐷-poly-exp oracles to obtain 𝑤 𝑗 := 𝜓𝑠𝑘 𝑗

𝑖
for

honest 𝑃 𝑗 and return that to the adversary. Keep a
counter cnt[𝑥𝑖] to keep track of the number of distinct
access to𝐷-poly-exp oracle. Also keep another counter
cnt to track the total number of completed query. The
NIZK proof of equality of exponent is simulated.

(4) Each RO query H2 (𝛼) is responded with Rand(𝛼). For
each such query, check if there exists any 𝑥𝑖 ∈ 𝐿 such
that 𝑒 (H1 (𝑥𝑖), 𝑣𝑘2) = 𝑒 (𝛼,𝑔2). If yes, then store the
triple (𝑥𝑖 , 𝑦𝑖 , 𝜋𝑖) to a list 𝐹 , where 𝑦𝑖 := Rand(𝛼) and
𝜋𝑖 := 𝛼 . At any time |𝐹 | > cnt, output 𝐹 as the answer
to the T-BOMDH challenger.

We argue that the above simulation is correct despite the fact
that the reduction, unlike the simulator, does not have access
to the secret-key 𝑠𝑘 . However, this was resolved using the 𝐷-
poly-exp oracle. The random oracles are simulated perfectly
too by plugging in the values from the challenge. Now, since
the counter cnt is incremented only when an evaluation query
is completed, that is whenever the adversary has acquired
sufficient information to produce one more valid triple, |𝐹 | >
|cnt| and the reduction wins the BOMDH game.

So, we can claim that:

Pr[E] ≥ Pr[E1 | E2]
whereE defines the eventwhen the reductionwins the BOMDH
game. This concludes the proof of this case.
Case-3. 𝑃𝐴 corrupt, |C| ≥ 𝑡 + 1. In this case, (analogous to
Case-2 in the centralized setting) the “unpredictability aspect”
of the construction is off the table. However, even in this case
the “public verifiability” guarantees that the server can not
produce an output that is incorrect, for example, biased to-
wards a specific value. In other words, though unpredictability
can not be guaranteed, the so-called “unbiasability” would
continue to hold.

The simulator, in this case, receives the verification key 𝑣𝑘
from the adversary and registers it with the ideal functionality
within 𝐾𝑒𝑦𝑠 [S] while controlling the servers in the C. Then it
simulates the honest client to the servers in C as follows:

(1) The simulator maintains two lists 𝐼 and 𝐿, where 𝐼
contains pairs (𝑥,𝜓), that is the information with re-
spect to the input and corresponding client’s message
(generated by the simulator); and 𝐿 contains tuples
(𝑥, 𝜋, 𝛽,𝑦), that is information from the entire evalua-
tion, including server’s message and the output with
respect to an input.

(2) On receiving (Input, 𝑣𝑘, 𝑥) sample a uniform random
𝜌 ←$ Z𝑝 and then construct (𝑥, 𝑥) just like an honest
party, where 𝑥 = (𝜓 := H1 (𝑥)𝜌 , `). Append (𝑥,𝜓) to a
list 𝐼 .

(3) On receiving a message 𝑦 from the aggregator 𝑃𝐴:
(a) If there is an (𝑥,𝜓) ∈ 𝐼 such that 𝑒 (𝑦,𝑔2) =

𝑒 (𝜓, 𝑣𝑘2):
(i) If (𝑥, ∗, ∗, ∗) ∉ 𝐿: then issue an evaluation

query (Eval, 𝑥, 𝑣𝑘) to the ideal function-
ality, and when the ideal functionality re-
turns the same query, reply with (𝜋 :=
𝑦1/𝜌 , 𝛽 := 𝑦). Finally, on receiving an out-
put𝑦 from the ideal functionality store (𝑥, 𝜋,
𝛽,𝑦) into 𝐿.

(ii) If there is (𝑥, 𝜋, 𝛽,𝑦) ∈ 𝐿: reply the evalua-
tion query with (𝜋, 𝛽).

23

(b) Otherwise, on receiving the evaluation query from
the ideal functionality, reply with ⊥.

(4) On receiving an RO query H2 (𝜋):
(a) If there is an (𝑥,𝜓) ∈ 𝐼 , such that 𝑒 = (𝜋,𝑔2) =

𝑒 (H1 (𝑥), 𝑣𝑘2) but (𝑥, ∗, ∗, ∗) ∉ 𝐿 : then make a
(Eval, 𝑣𝑘, 𝑥) query to the ideal functionality and
respond with (𝜋, 𝛽 := 𝜋𝜌). On the completion
of the evaluation query, receive 𝑦 from the ideal
functionality which it programs as an answer
H2 (𝜋) := 𝑦. Append (𝑥, 𝜋, 𝛽,𝑦) into 𝐿.

(b) If there exists a tuple (𝑥, 𝜋, 𝛽,𝑦) ∈ 𝐿, then answer
with H2 (𝜋) := 𝑦.

(c) Otherwise just respond with Rand(𝜋).
Other queries are straightforward to handle in this case. We

argue that the above simulation is correct with overwhelm-
ing probability. In particular, unless the adversarial server can
guess H1 (𝑥)𝑠𝑘 before observing 𝑥 , the simulation would be
perfect. Note that, once the server obtains 𝑥 , a pair (𝑥,𝜓) gets
listed in 𝐼 . And then there are two cases: (i) The adversary
makes a RO query H2 (𝜋), with a valid 𝜋 for which the veri-
fication equation holds, before it returns 𝑦: in this case, the
simulator first executes Step 4a. Later when it receives 𝑦, it
executes Step 3(a)ii. Clearly, in this case, the simulator is able
to consistently program the random oracle and then subse-
quently finish the evaluation using ideal functionality. (ii) In
the other case, the adversary first sends 𝑦 and later makes a
RO query H2 (𝜋): the simulator now first executes Step 3(a)i,
and later Step 4c. In this case, since the pre-verification must
satisfy, the simulation would be perfect. Of course, in case the
pre-verification does not satisfy, the simulator would not allow
to complete the evaluation, which it ensures by seding ⊥ to
the ideal functionality. However, if the adversary can correctly
predict the output of H1 (𝑥) without explicitly making RO
query H1 (𝑥), the simulation would fail, as it could not have 𝑦
without making an evaluation query to the ideal functionality
– this clearly happens only with negligible probability. This
concludes the proof.

B.3 (Threshold) One-More Diffie-Hellman
Assumptions in Generic Group Model

We use a variant of threshold one-more Diffie-Hellman as-
sumptions used in [3, 36]. In particular, our assumption will
be over bilinear pairing groups, and for that, we also do not
need the gap-versions.
Notations. We use notations from Agrawal et al. [3]. For
𝑡, 𝑓 , 𝑛 ∈ N (where 𝑓 ≤ 𝑡 < 𝑛) and q = (𝑞1, . . . , 𝑞𝑛) ∈ N𝑛 ,
defineMax𝑡,𝑓 (q) to be the largest value of ℓ for which there
exists binary vectors u1, . . . , uℓ ∈ {0, 1}𝑛 such that each u𝑖 has
hamming wight ≥ 𝑡 − 𝑓 and q satisfies q ≥ ∑ℓ

𝑖=1 u𝑖 . Next, we
define the T-BOMDH – Threshold-Bilinear One-more Diffie
Hellman assumption.

Definition 4. (f, t, n, N, l) - T-BOMDH. Consider polynomial
(in ^) size integers 𝑛, 𝑡, 𝑓 , 𝑁 such that 𝑓 ≤ 𝑡 < 𝑛 and consider

bilinear pairing groups G1 × G2 → G𝑇 where each group has
prime order 𝑝 . Let 𝑔1 and 𝑔2 be two random generators of the
groups G1 and G2 respectively. Then we say that the T-BOMDH
assumption holds, if for all PPT adversary A the probability of
the following game returning 1 is ≤ negl(^).

• Sample uniform random secret 𝛼 ←$ Z𝑝 .
• Sample random group elements 𝑔1, . . . 𝑔𝑁 ∈ G1.
• Provide 𝑔1, 𝑔𝛼1 , 𝑔2, 𝑔𝛼2 , (𝑔1, . . . , 𝑔𝑁) to A.
• On receiving {(𝑖, 𝛼𝑖)}𝑖∈[𝑓] from A choose an 𝑡-degree

polynomial 𝐷 uniformly at random such that for all
𝑖 ∈ [𝑓]: 𝐷 (𝑖) = 𝛼𝑖 and 𝐷 (0) = 𝛼 .
• Set q := 0𝑛 .
• Give the following oracle access O(𝑖, 𝑥) to the adversary:

O(𝑖, 𝑥 ∈ G)
– Increment 𝑞𝑖 by 1.
– Output 𝑥𝛼𝑖 where 𝛼𝑖 := 𝐷 (𝑖).

• On receiving {(𝑔, ℎ̄)}𝑖∈[ℓ] from A, return 1 if and only
if all of the following conditions are met:
– All 𝑔𝑖 are distinct and ℓ > Max(®𝑞).
– For all 𝑖 ∈ [ℓ] : 𝑔 ∈ {𝑔1, . . . , 𝑔𝑁 } and ℎ̄𝑖 = 𝑔𝛼𝑖 .

Theorem 5. (𝑓 , 𝑡, 𝑛, 𝑁 , 𝑙) − T-BOMDH is equivalent to (f, t,
n, l, l)-T-BOMDH

Proof. Given an (𝑓 , 𝑡, 𝑛, 𝑁 , 𝑙) − T-BOMDH adversary, A,
let us construct B, a (𝑓 , 𝑡, 𝑛, 𝑙, 𝑙) − T-BOMDH adversary using
A.

Let 𝛼 ←−
$
Z𝑝 and 𝑔1, 𝑔𝛼1 , 𝑔2, 𝑔𝛼2 , (𝑔1, 𝑔2, · · · , 𝑔𝑙) ←−$

G𝑙1 be

a challenge vector for B. Now B chooses 𝑁 random vec-
tors (𝛽𝑖,1, 𝛽𝑖,2, · · · , 𝛽𝑖,𝑙) ←−$

Z𝑙𝑝 for all 1 ⩽ 𝑖 ⩽ 𝑁 (Note that

choosing N random vectors is nothing but randomly select-
ing a 𝑁 × 𝑙 matrix over Z𝑝 so let’s call the matrix formed by
these 𝛽 vectors as M.) and defines 𝑔′

𝑖
:= Π𝑙

𝑘=1𝑔
𝛽𝑖,𝑘
𝑘

and sends
𝑔1, 𝑔𝛼1 , 𝑔2, 𝑔𝛼2 , (𝑔

′
1, 𝑔
′
2, · · · , 𝑔

′
𝑁
) as a challenge vector to A.

𝑀 ×
©«
𝑔1
𝑔2
.
.
.

𝑔𝑙

ª®®®®¬
=

©«
𝑔′1
𝑔′2
.
.
.

𝑔′
𝑁

ª®®®®¬
(1)

First A chooses a corrupt set of parties along with the
corrupt values 𝐹 = {(𝑖, 𝛼𝑖)} of size 𝑓 . Then A passes 𝐹 to
B, then B passes it to it’s challenger. Then the challenger
fixes a random t-degree polynomial 𝐷 (𝑥) ∈ Z𝑝 [𝑥] such that
𝐷 (𝑖) = 𝛼𝑖 for all indices 𝑖 in 𝐹 , 𝐷 (0) = 𝛼 and rest of the
evaluations are all randomly fixed.
B answers a T-BOMDH oracle query to O𝐷 (., .) of A by

making the same query to itself.
Finally, if A outputs some 𝑙− element 𝐽 ⊆ [𝑁] and 𝑣 𝑗 =

(𝑔′
𝑗
)𝛼 for all 𝑗 ∈ 𝐽 .
Now let𝑈 be the submatrix formed by the rows correspond-

ing to the indices in 𝐽 , so𝑈 is an 𝑙 × 𝑙 random matrix over Z𝑝 .
It is invertible with high probability.

24

Now, B computes

𝑈 −1 ×
©«
𝑣1
𝑣2
.
.
.

𝑣𝑙

ª®®®®¬
=

©«
𝑤1
𝑤2
.
.
.

𝑤𝑙

ª®®®®¬
(2)

and outputs (𝑤1,𝑤2, · · · ,𝑤𝑙). Note𝑤𝑖 = 𝑔𝛼𝑖 with high prob-
ability iff A wins, so B wins the T-BOMDH game with high
proibability iff A wins. □

Lemma 1. Let 𝑡 be any positive integer. Then there doesn’t
exist q ∈ Z𝑛𝑝 s.t.
(1) | |q| |1 ⩾ 𝑄𝑡 , and
(2) | |q| |𝑠𝑢𝑝 ⩽ 𝑄 ,
where 𝑄 = Max𝑡,0 (q) + 1.

Proof. Proof by induction on𝑄 . If 𝑄 = 1 thenMax𝑡,𝑓 q) =
0, which implies that there are at most 𝑡 − 1 non zero entries
in q. So if satisfies (2), then𝑤 is at most 𝑡 − 1, so (1) can’t be
satisfied. So there doesn’t exist q where both the inequalities
are satisfied simultaneously.

Now suppose that the lemma holds for𝑄−1. Now let’s check
for 𝑄 . If the lemma doesn’t hold, then there exists q which
satisfies both (1) and (2). Such a qwill have at most 𝑡−1 entries
that are greater than or equal to 𝑄 (otherwise those 𝑡 entries
can be decreased𝑄 times, soMax𝑡,0 (q) ⩾ 𝑄). Let q′ be q with
largest t entries decreased. Then this q′ satisfies both (1) and
(2) as | |q′ | |1 = (| |q| |1 − 𝑡) ⩾ (𝑄 − 1)𝑡 and | |q′ | |𝑠𝑢𝑝 ⩽ (𝑄 − 1)
andMax𝑡,0 (q′) = 𝑄 − 2. □

Lemma 2. Let 𝑡 be any non negative integer, 𝑛 be any pos-
itive integer, q be an 𝑛−dimensional vector, 𝑤 = | |q| |1, 𝑄 =

Max𝑡+1,0 (q) + 1, and k be a𝑤−dimensional vector where there
are q𝑖 𝑖′𝑠 as its entries (𝑖 = 1, 2, . . . , 𝑛). Then for any𝑤− dimen-
sional vectors b1, . . . , b𝑄 , the set𝑉 = {k(𝑗) ⊙ b𝑖 } 𝑗∈{0,...,𝑡 },𝑖∈[𝑄]
is linearly dependent, where k = (𝑘1, · · · , 𝑘𝑤)𝑇 k(𝑗) = (𝑘 𝑗1 , · · · , 𝑘

𝑗
𝑤)𝑇 .

Proof. Let𝑀 be the𝑤×𝑄 (𝑡+1) dimensional matrix whose
columns are vectors in𝑉 . To prove the lemma, enough to show
that 𝑟𝑎𝑛𝑘 (𝑀) < 𝑄 (𝑡 + 1).

Let k = (𝑘1 . . . 𝑘𝑤)𝑇

𝑀 =

𝑏11 𝑏12 · · ·𝑏1𝑄 · · ·𝑘𝑡1𝑏11 𝑘𝑡1𝑏12 · · ·𝑘𝑡1𝑏1𝑄
𝑏21 𝑏22 · · ·𝑏2𝑄 · · ·𝑘𝑡2𝑏21 𝑘𝑡2𝑏22 · · ·𝑘𝑡2𝑏2𝑄
.
.
.

.

.

.
. . .
.
.
.
. . .
.
.
.

.

.

.
. . .
.
.
.

𝑏𝑤1 𝑏𝑤2 · · ·𝑏𝑤𝑄 · · ·𝑘𝑡𝑤𝑏𝑤1 𝑘𝑡𝑤𝑏𝑤2 · · ·𝑘𝑡𝑤𝑏𝑤𝑄

(3)

Let 𝑀𝑖 be the sub matrix formed by rows where 𝑘 𝑗 = 𝑖 ,
note that 𝑟𝑎𝑛𝑘 (𝑀𝑖) ⩽ 𝑄 , as𝑀𝑖 has 1st, 𝑄 + 1 . . . , (𝑡 − 1)𝑄 + 1
columns are just multiples of the first column, and similarly
for 2nd and𝑄 + 2, . . . , (𝑡 − 1)𝑄 + 2 are multiples of 2nd column
and so on. If 𝑞𝑖 > 𝑄 , then one can select𝑄 rows of𝑀𝑖 forming
the matrix𝑀′

𝑖
s.t 𝑟𝑎𝑛𝑘 (𝑀′

𝑖
) = 𝑟𝑎𝑛𝑘 (𝑀𝑖). For all other 𝑞𝑖 ’s let

𝑀′
𝑖
= 𝑀𝑖 , let 𝑞′𝑖 be the no of rows of the matrix𝑀′

𝑖
. Note that

𝑞′
𝑖
= 𝑄 if 𝑞𝑖 > 𝑄 , otherwise 𝑞′𝑖 = 𝑞𝑖 . Let q′ = (𝑞′1 . . . 𝑞

′
𝑤)𝑇 and

let𝑤 ′ = | |q′ | |1.
Now let

𝑀′ =

𝑀′1
𝑀′2
.
.
.

𝑀′
𝑄

(4)

i.e𝑀′ is the concatenation of𝑀′
𝑖
’s.

And observe that 𝑟𝑎𝑛𝑘 (𝑀′) = 𝑟𝑎𝑛𝑘 (𝑀) as we removed
some rows from𝑀 which are linearly dependent on the rows of
𝑀′. But we haveMax𝑡+1,0 (q′) = Max𝑡+1,0 (q) = 𝑄−1. (𝑞′

𝑖
⩽ 𝑞𝑖

for all 𝑖 impliesMax𝑡+1,0 (q′) ⩽ 𝑄 − 1. On the other hand let
v1 + · · · + v𝑄−1 be the sum of binary vectors with hamming
weight being 𝑡 + 1, then each co-ordinate of such a sum is at
most 𝑄 − 1, soMax𝑡+1,0 ⩾ 𝑄 − 1.) Now by lemma 1, we have
𝑤 ′ < 𝑄 (𝑡 + 1). So 𝑟𝑎𝑛𝑘 (𝑀′) = 𝑟𝑎𝑛𝑘 (𝑀) ⩽ 𝑤 ′ < 𝑄 (𝑡 + 1). □

Lemma 3. Let 𝑡, 𝑛, q,𝑤,𝑄 be same as in lemma 2. Then there
doesn’t exist a 𝑄 × 𝑤 matrix 𝐴 and 𝑤 × 𝑄 matrix 𝐵 and an
invertible 𝑤 × 𝑤 diagonal matrix 𝐾 s.t 𝐴𝐵 = 𝐼 and 𝐴𝐾𝐵 =

𝐴𝐾2𝐵 = · · · = 𝐴𝐾𝑡𝐵 = 𝑂 , where 𝐾 is the matrix which has 𝑞𝑖
𝑖’s as diagonal entries (for all 𝑖 = 1 to 𝑛), 𝐼 and 𝑂 are 𝑄 × 𝑄
identity and zero matrix respectively.

Proof. Suppose such a 𝐾,𝐴 and 𝐵 exists

𝐾 =

𝑘1

. . .

𝑘𝑤

 (5)

and let a𝑇1 , . . . , a
𝑇
𝑄
be the rows of𝐴, b1, . . . , b𝑄 be the columns

of 𝐵, and k = (𝑘1 . . . 𝑘𝑤)𝑇 . Then all these a𝑖 ’s , b𝑗 ’s and k are
𝑤-dimensional column vectors.

Let k𝑗 = (𝑘 𝑗1 . . . 𝑘
𝑗
𝑤)𝑇 , k𝑗 ⊙ b𝑖 = 𝐾 𝑗b𝑖 and 𝑉 = {k𝑗 ⊙

b𝑖 } 𝑗=0...𝑡,𝑖=1...𝑄 . Then the conditions 𝐴𝐵 = 𝐼 and 𝐴𝐾𝐵 =

𝐴𝐾2𝐵 = · · · = 𝐴𝐾𝑡𝐵 = 𝑂 can be rewritten as

a𝑇𝑖 b =

{
1 b = b𝑖
0 b ∈ 𝑉 \ {b𝑖 }

(6)

for all 1 ⩽ 𝑖 ⩽ 𝑄 . Therefore b𝑖 doesn’t belong to linear span
of 𝑉 \ {b𝑖 }. Suppose that𝑊 = 𝑉 \ {b1, . . . , b𝑄 } is a linearly
independent set. Then𝑊 ∪ {b1} is also linearly independent
set, similarly𝑊 ∪ {b1, b2} is a linearly independent set as b2 is
independent of𝑊 ∪ {b1}. And finally 𝑉 is a linearly indepen-
dent set. Contradicts lemma 2. So𝑊 = {k𝑗 ⊙ b𝑖 }1⩽ 𝑗⩽𝑡,1⩽𝑖⩽𝑄
is a linearly dependent set.

Then there exists 𝑥𝑖 𝑗 for all 1 ⩽ 𝑗 ⩽ 𝑡, 1 ⩽ 𝑖 ⩽ 𝑄 at least
one of them is non zero s.t

𝑡∑︁
𝑗=1

𝑄∑︁
𝑖=1

𝑥𝑖 𝑗k𝑗 ⊙ b𝑖 = 0. (7)

25

Since non of the k’s entries are zeroes,
𝑡∑︁
𝑗=1

𝑄∑︁
𝑖=1

𝑥𝑖 𝑗k𝑗 ⊙ b𝑖 =
𝑡∑︁
𝑗=1

𝑄∑︁
𝑖=1

𝑤∑︁
𝑙=1

𝑥𝑖 𝑗𝑘
𝑗

𝑙
𝑏𝑙𝑖

= 𝑘𝑙 (
𝑡∑︁
𝑗=1

𝑄∑︁
𝑖=1

𝑤∑︁
𝑙=1

𝑥𝑖 𝑗𝑘
𝑗−1
𝑙

𝑏𝑙𝑖) = 0 for all l.

(8)
.

So
𝑄∑︁
𝑖=1

𝑥𝑖1b𝑖 +
𝑡−1∑︁
𝑗=0

𝑄∑︁
𝑖=1

𝑥𝑖 𝑗+1k𝑗 ⊙ b𝑖 = 0. (9)

Since b𝑖s are linearly independent of𝑊 , so 𝑥𝑖1 = 0 for all
1 ⩽ 𝑖 ⩽ 𝑄 .

So
𝑡−1∑︁
𝑗=0

𝑄∑︁
𝑖=1

𝑥𝑖 𝑗+1k𝑗 ⊙ b𝑖 = 0. (10)

Again repeating the same trick as above(i.e 𝑘𝑖 ≠ 0), we get all
𝑥𝑖 𝑗 = 0 for all 0 ⩽ 𝑗 ⩽ 𝑡, 1 ⩽ 𝑖 ⩽ 𝑄 . So 𝑉 can’t be linearly
dependent either. So such an 𝐴, 𝐵 and 𝐾 doesn’t exist. □

Theorem 6 (Generic group hardness of (0, t, n, l, l)T-BOMDH).
Let G1 ×G2 → G𝑇 be generic bilinear pairing map, where each
group is of prime order 𝑝 . We use b (1) (𝑎), b (2) (𝑏) and b (𝑇) (𝑐)
for 𝑎, 𝑏, 𝑐 ∈ Z𝑝 to denote elements in G1,G2 and G𝑇 respec-
tively, where b (1) (.), b (2) (.) and b (𝑇) (.) are random injective
mappings from Z𝑝 to bit strings of sufficient size(Note: for all
the three mappings domain and codomain are same).
- Group operation oracle, which on input (b (𝑖) (𝑎), b (𝑖) (𝑏)), out-
puts b (𝑖) (𝑎 + 𝑏) for all 𝑖 ∈ {1, 2,𝑇 }.

- Bilinear pairing oracle, which on input (b (1) (𝑎), b (2) (𝑏)), out-
puts b (𝑇) (𝑎𝑏).

- T-BOMDH oracle, which on input (𝑖, b (1) (𝑎)), outputs
O𝐷 (𝑖, b (1) (𝑎)) = b (1) (𝐷 (𝑖)𝑎)

.
If AdvOD (.,.)A (t, n, l, r, s, p) is the probability that

A(b (1) (1), b (1) (𝐷 (0)), b (2) (1), b (2) (𝐷 (0)), b (1) (𝑢1), · · · , b (1) (𝑢𝑙))
outputs

(b (1) (𝐷 (0)𝑢1), · · · , b (1) (𝐷 (0)𝑢𝑙))
after making 𝑟 group operation queries to all three groups com-
bined, 𝑒 bilinear pairing queries and 𝑞𝑖 queries to O𝐷 (𝑖, .) (𝑤 =∑𝑛
𝑖=1 𝑞𝑖) s.tMax𝑡,0 (q) < 𝑙 , then

AdvOD (.,.)A (t, n, l, r, e, q, p) ⩽ (ewl) + 2
p

+ (l + e + r + w)
2ew

2p

Proof. Let’s construct B which simulates the real chal-
lenger while interacting with A. It maintains a list ℒ :=
{(𝐹𝑠 , b (𝑖)𝑠)}𝑠=1,...,𝜎 , where 𝐹𝑠 (𝑈1, . . . ,𝑈𝑙 , 𝐴0, 𝐴1, . . . , 𝐴𝑡) is a poly-
nomial of degree at most 𝑒𝑤 , and b (𝑖)𝑠 ’s are random elements
in G𝑖 . Initially B sets 𝜎 = 𝑙 + 2 and initializes listℒ by setting
𝐹1 = 1, 𝐹2 = 𝐷 (0) = 𝑎0, 𝐹3 = 𝑢1, · · · , 𝐹𝑙+2 = 𝑢𝑙 , and picks

b
(1)
1 , b

(2)
1 , b

(1)
2 , b

(2)
2 , b

(1)
3 , · · · , b (1)

𝑙+2

as random elements in respective groups corresponding to

upper indices and 𝑎0, · · · , 𝑎𝑡
$←− Z𝑝 . B sends

b
(1)
1 , b

(2)
1 , b

(1)
2 , b

(2)
2 , b

(1)
3 , · · · , b (1)

𝑙+2
to A as

b (1) (1), b (2) (1), b (1) (𝐷 (0)), b (2) (𝐷 (0)), b (1) (𝑢1), · · · , b (1) (𝑢𝑙).
Then A makes following three types of oracle queries to B
on values that are previously obtained from B:
- Group operation query: A inputs (𝑖, 𝑠1) and (𝑖, 𝑠2). Then B
computes 𝐹𝜎+1 = 𝐹𝑠1 + 𝐹𝑠2 , if there exists 𝑡 ⩽ 𝜎 such that
(𝐹𝑡 , b (𝑖)𝑡) ∈ ℒ, thenB outputs b (𝑖)𝑡 toA. OtherwiseB picks
random group element b (𝑖)

𝜎+1from G𝑖 which is different from
the previously chosen ones and sends it toA and sets 𝜎 + +,
𝑟 + +.

- Bilinear pairing operation query:A inputs (1, 𝑠1) and (2, 𝑠2).
Then B computes 𝐹𝜎+1 = 𝐹𝑠1𝐹𝑠2 . If there exists 𝑡 ⩽ 𝜎 such
that (𝐹𝑡 , b (𝑇)𝑡) ∈ ℒ, thenB outputs b (𝑇)𝑡 toA. OtherwiseB
picks random group element b (𝑇)

𝜎+1fromG𝑇 which is different
from the previously chosen ones and sends it to A and sets
𝜎 + +, 𝑒 + +.

- O𝐷 (., .) oracle query: A inputs 𝑘 ∈ [𝑛] and 𝑠 ∈ [𝜎]. Then
B computes 𝐹𝜎+1 = (L𝑇

𝑘
a)𝐹𝑠 . If there exists 𝑡 ⩽ 𝜎 such that

(𝐹𝑡 , b (1)𝑡) ∈ ℒ, thenB outputs b (1)𝑡 toA. OtherwiseB picks
random group element b (1)

𝜎+1fromG𝑇 which is different from
the previously chosen ones and sends it to A and sets 𝜎 +
+, 𝑞𝑘 + +. Where L𝑇

𝑘
= [1 𝑘 · · · 𝑘𝑡]𝑇 and a = [𝑎0 · · · 𝑎𝑡]𝑇 .

A finally outputs (𝐹𝑠1 , · · · , 𝐹𝑠𝑙), and it wins if 𝐹𝑠𝑖 = 𝑢𝑖𝐷 (0)
for all 𝑖 ∈ [𝑙].

Now we analyze the probability that A succeeds for a ran-
dom assignment of (𝑢1, · · · , 𝑢𝑙 , 𝑎0, · · · , 𝑎𝑡).

Note that output of A comes from three types of oracle
queries mentioned above. Therefore 𝐹𝑠 is a linear combination
of 𝑣1, · · · , 𝑣𝑤 , 𝑢1, 𝑢𝑙 1 and 𝐷 (0). Where 𝑣𝑖 (𝑖 = 1, . . . ,𝑤) is the
value obtained from O𝐷 (., .) oracle queries and other 𝑢 𝑗 ’s are
obtained from group oerations and bilinear pairing operations.
So

𝐹𝑠 =

𝑤∑︁
𝑖=1

𝛼
(𝑠)
𝑖
𝑣𝑖 +

𝑟+𝑒∑︁
𝑖=0

𝛾
(𝑠)
𝑖
𝑢𝑖 ,

where

𝑣𝑖 =
∑︁

𝑍⊆[𝑖] s.t 𝑖∈𝑍
[(
𝑟+𝑒∑︁
𝑗=0

𝛽
(𝑖)
𝑗𝑍
𝑢 𝑗)

∏
𝑙∈𝑍
(L𝑇
𝑘𝑙

a)]

where 𝛼𝑖 ’s, 𝛾𝑖 ’s and 𝛽 𝑗𝑍 ’s are all field elements specified byA.
(And suppose that in the 𝑖𝑡ℎ O𝐷 (., .) oracle query,A’s second
is 𝑘𝑖 ; then L𝑇

𝑘𝑖
a must appear, so 𝑖 ∈ 𝑍 holds in the expression

of 𝑣𝑖 .)
A wins iff 𝐹𝑠𝑖 = 𝐷 (0)𝑢𝑖 for all 𝑖 = 1, . . . , 𝑙 . Suppose that

there exists an 𝑖 ∈ [𝑙] s.t. 𝑑𝑒𝑔(𝐹𝑠𝑖) > 1, but A still wins, i.e.
as the 𝑑𝑒𝑔(𝐷 (0)𝑢𝑖) = 1, then the above case happens only
when the both the polynomials evaluates to the same values
on the randomness over 𝑢𝑖 ’s and 𝑎 𝑗 ’s (abuse of notation , we

26

are using same variables for polynomial variables and field
elements 𝑢𝑖 and 𝑎 𝑗). So 1 ⩽ 𝑑𝑒𝑔(𝐹𝑠𝑖 − 𝐷 (0)𝑢𝑖) ⩽ 𝑒𝑤) for a
fixed chosen random 𝑢𝑖 ’s random 𝐷 (0) will be solution with
probability 𝑒𝑤

𝑝 . Since there are 𝑙 possible values of 𝑖 , so the
probability 𝑑𝑒𝑔(𝐹𝑠𝑖) > 1 but A still wins is 𝑒𝑤𝑙𝑝 .

Now consider the case where 𝑑𝑒𝑔(𝐹𝑠𝑖) ⩽ 1 for all i. Let 𝑣 ′
𝑖
be

𝑣𝑖 with degree greater than 1 eliminated and similarly for 𝑢𝑖 ’s.
But in the case of 𝑣𝑖 ’s only single term is left, where 𝑍 = {1},
i.e.,

𝑣 ′𝑖 = (
𝑙∑︁
𝑗=0

𝛽
(𝑖)
𝑗 {𝑖 }𝑢 𝑗) (L𝑘𝑖 a).

Then

𝐹𝑠 =

𝑤∑︁
𝑖=1

𝛼
(𝑠)
𝑖
𝑣 ′𝑖 +

𝑙∑︁
𝑖=0

𝛾
(𝑠)
𝑖
𝑢𝑖 .

We can rewrite the above expression 𝐹𝑠 in matrix form below.
Note that all the terms in the above expression are of degree
⩽ 1. And denote 𝛽 (𝑖)

𝑗 {1} as 𝛽
(𝑖)
𝑗

.
𝐹𝑠1
.
.
.

𝐹𝑠𝑙

 = 𝐴

𝑣 ′1
.
.
.

𝑣 ′𝑤

 +𝐶u +

𝛾
(𝑠1)
0
.
.
.

𝛾
(𝑠𝑙)
0

 , (11)

𝑣 ′1
.
.
.

𝑣 ′𝑤

 = (𝐵u + b0) ⊙

L𝑇
𝑘1

a
.
.
.

L𝑇
𝑘𝑤

a

 , (12)

where

𝐴 =

𝛼
(𝑠1)
1 · · ·𝛼 (𝑠1)

𝑤

.

.

.
. . .
.
.
.

𝛼
(𝑠𝑙)
1 · · ·𝛼 (𝑠𝑙)𝑤

𝑙×𝑤
, 𝐵 =

𝛽
(1)
1 · · ·𝛼 (1)

𝑙
.
.
.
. . .
.
.
.

𝛼
(𝑤)
1 · · ·𝛼 (𝑤)

𝑙

𝑤×𝑙
𝐶 =

𝛾
(1)
1 · · ·𝛾 (1)

𝑙
.
.
.
. . .
.
.
.

𝛾
(𝑙)
1 · · ·𝛾

(𝑙)
𝑙

𝑙×𝑙
, u =

𝑢1
.
.
.

𝑢𝑙

 , b0 =

𝛽
(1)
0
.
.
.

𝛽
(𝑤)
0

Let b = 𝐵u + b0. Now substitute eq. (12) into eq. (11), then

we get
𝐹𝑠1
.
.
.

𝐹𝑠𝑙

 = 𝐴
©«b ⊙

L𝑇
𝑘1

a
.
.
.

L𝑇
𝑘𝑤

a

ª®®®¬ +𝐶u +

𝛾
(𝑠1)
0
.
.
.

𝛾
(𝑠𝑙)
0

 . (13)

Note that
L𝑇
𝑘1

a
.
.
.

L𝑇
𝑘𝑤

a

 =

∑𝑡
𝑖=0 𝑎𝑖𝑘

𝑖
1

.

.

.∑𝑡
𝑖=0 𝑎𝑖𝑘

𝑖
𝑤

 = 𝑎0

1
.
.
.

1

 + 𝑎1

𝑘1
.
.
.

𝑘𝑤

 + · · · + 𝑎𝑡

𝑘𝑡1
.
.
.

𝑘𝑡𝑤

So

b ⊙

L𝑇
𝑘1

a
.
.
.

L𝑇
𝑘𝑤

a

 = 𝑎0𝐾
0b + · · · + 𝑎𝑡𝐾𝑡b, (14)

where

𝐾 =

𝑘1

. . .

𝑘𝑤

so now substituting eq. (14) in eq. (13) we get

𝐹𝑠1
.
.
.

𝐹𝑠𝑙

 = 𝐴(𝑎0𝐾
0b + · · · + 𝑎𝑡𝐾𝑡b) +𝐶u +

𝛾
(𝑠1)
0
.
.
.

𝛾
(𝑠𝑙)
0

= 𝑎0𝐴𝐾

0b + · · · + 𝑎𝑡𝐴𝐾𝑡b +𝐶u +

𝛾
(𝑠1)
0
.
.
.

𝛾
(𝑠𝑙)
0

 .
(15)

substituting back b = 𝐵u + b0 in eq. (15) we get
𝐹𝑠1
.
.
.

𝐹𝑠𝑙

 = 𝑎0𝐴𝐾
0𝐵u + 𝑎0𝐴𝐾

0b0 + · · · + 𝑎0𝐴𝐾
𝑡𝐵u+

𝑎𝑡𝐴𝐾
𝑡b0 +𝐶u +

𝛾
(𝑠1)
0
.
.
.

𝛾
(𝑠𝑙)
0

For a fixed random u, the right side of the above equation is a
linear function of a. If A wins, then

𝐹𝑠1
.
.
.

𝐹𝑠𝑙

 = 𝑎0u,

then upon comparing the last two equations, we get

(𝐴𝐵 − 𝐼)u+𝐴b0 = 𝐴𝐾𝐵u+𝐴𝐾b0 = · · · = 𝐴𝐾𝑡𝐵u+𝐴𝐾𝑡b0 = 0
(16)

For fixed random u the above equations evaluate to 0with prob-
ability 1

𝑝 . The other case where the above equations become
zero is when 𝐴𝐵 − 𝐼 = 𝐴𝐾𝐵 = . . . 𝐴𝐾𝑡𝐵 = 0. But according
to lemma 3, at least one of 𝐴𝐵 − 𝐼 , 𝐴𝐾𝐵, . . . , 𝐴𝐾𝑡𝐵 isn’t zero.
Then that particular matrix equation evaluates to zero with
probability for a fixed u is again 1

𝑝 .
So in both the cases where 𝑑𝑒𝑔 ⩽ 1 and 𝑑𝑒𝑔 > 1 advantage

of the adversary interacting B is (𝑒𝑤𝑙)+2𝑝 .
So far the above computations are for a fixed random u,

now if we fix both u and a, then we have to account for two
distinct polynomials evaluating to the same value for random
u and a. This event happens with probability

(𝜎
2
)
𝑒𝑤
𝑝 , where

𝜎 ⩽ 𝑙 + 𝑒 + 𝑟 +𝑤 .
Thus

AdvOD (.,.)A (t, n, l, r, e, q, p) ⩽ (ewl) + 2
p

+ (l + e + r + w)
2ew

2p
□

Now the generic group hardness of (𝑓 , 𝑡, 𝑛, 𝑙, 𝑙)T-BOMDH
follows from theorem 6 as (𝑓 , 𝑡, 𝑛, 𝑙, 𝑙)T-BOMDH is same as
(0, 𝑡 − 𝑓 , 𝑛, 𝑙, 𝑙)T-BOMDH. And from theorem 6, theorem 5
generic group hardness of (𝑓 , 𝑡, 𝑛, 𝑁 , 𝑙)T-BOMDH follows.

27

	Abstract
	Contents
	1 Introduction
	2 Use case
	3 Technical Overview
	4 Related Work
	5 Preliminaries
	5.1 Universal Composability
	5.2 Shamir's Secret Sharing Shamir93:CommACM.
	5.3 NIZK proofs
	5.4 Our Model
	5.5 (Threshold) One-More Diffie-Hellman Assumptions

	6 Output Private VRF (Pri-VRF)
	6.1 Definition: Pri-VRF
	6.2 Our Pri-VRF Construction

	7 Distributed Pri-VRF (Pri-DVRF)
	7.1 Definition: Pri-DVRF
	7.2 Our Pri-DVRF construction

	8 Performance Analysis
	9 Conclusion
	References
	A Smart-contract based VRF Service Framework
	A.1 GLOW-DVRF Framework glowframework, GLOW21:EuroSnP

	B Missing proofs
	B.1 Proof of Theorem 1
	B.2 Proof of Theorem 3
	B.3 (Threshold) One-More Diffie-Hellman Assumptions in Generic Group Model

